Signal and Tracking Generator

USG Series

USER MANUAL REVISION 1.1 January 2014

ISO-9001 CERTIFIED MANUFACTURER

This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the rights to change specification, equipment, and maintenance procedures at any time without notice.

Good Will Instrument Co., Ltd. No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan.

Table of Contents

SAFETY INSTR	UCTIONS	2
GETTING STAF	RTED	5
	USG Series Introduction	7
	Appearance	9
	First Time Use Instructions	
OPERATION		22
	Signal Generator Function	.23
	Tracking Generator Function (Primary RF	
	Software)	.33
FAQ		41
APPENDIX		42
	USG Specifications	
	USG Dimensions	
	Declaration of Conformity	
NDEX		49

This chapter contains important safety instructions that you must follow during operation and storage. Read the following before any operation to insure your safety and to keep the instrument in the best possible condition.

Safety Symbols

These safety symbols may appear in this manual or on the instrument.

	Warning: Identifies conditions or practices that could result in injury or loss of life.
	Caution: Identifies conditions or practices that could result in damage to the instrument or to other properties.
<u>/</u> }	DANGER High Voltage
Ń	Attention Refer to the Manual
Ţ	Earth (ground) Terminal
\rightarrow	Frame or Chassis Terminal
	Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline	 Do not place any heavy object on the instrument.
	 Avoid severe impact or rough handling that leads to damaging the instrument.
	• Do not discharge static electricity to the instrument.
	• Use only mating connectors, not bare wires, for the terminals.
	• Do not disassemble the instrument unless you are qualified.
	• Ensure reverse power to the USG output terminal does not exceed +30dBm.
	• Ensure the DC voltage connected to the USG output terminal does not exceed beyond the range of -25Vdc to +25Vdc.
Power Supply	• 5V DC (USB power)
Cleaning	• Disconnect all cables or devices from the instrument before cleaning.
	• Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid.
	• Do not use chemicals containing harsh material such as benzene, toluene, xylene, and acetone.
Operation Environment	 Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
	• Temperature: 5°C to 45°C
	• Humidity: 65% @ 50°C

G≝INSTEK

Storage environment	Location: Indoor
	• Temperature: -20°C to 60°C; 65°C @ 70% RH
Disposal	Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.

GETTING STARTED

This chapter provides a brief overview of the USB Signal Generator (hereafter referred to as 'USG'), the package contents, instructions for first time use and an introduction to the signal generator display and tracking generator function.

USG Series Inti	roduction	. 7
	Series lineup	.7
	Main Features	.7
	Package Contents and Standard	
	Accessories	.8
	Optional Accessories	.8
Appearance		9
••	Front Face	
	Rear Face	.9
	Signal Generator Display - Java	10
	Signal Generator Display – Android App	12
	Primary RF – Tracking Generator Function	
First Time Use	Instructions	16
	Installing the USG USB Driver	16
	Disabling the Device Driver Signature	
	Enforcement in Windows 8	18
	Installing the USG Software from Google	
	Play	19

Tracking Generator Software Installation	
(Primary RF)	.20

USG Series Introduction

The USG series signal and tracking generators can be operated as standalone continuous wave generators, or when paired to a PC and the GSP-730 spectrum analyzer, they can be used as tracking generators.

As continuous wave generators, the USG can be configured using any java supported PC or an Android device. The device can generate continuous wave, sweep, power sweep and frequency hopping waveforms.

As a tracking generator, the USG can be connected to a PC using dedicated software (Primary RF) to synchronize the USG with the GSP-730 spectrum analyzer.

Series lineup

The USG series consists of 5 models, spanning a number of different frequency ranges.

Model	Frequency	Phase Noise
USG-LF44	34.5 MHz to 4.4 GHz	< -97dBc/Hz@1GHz, 10kHz
USG-0103	100 MHz to 300 MHz	< -100dBc/Hz@200MHz, 10kHz
USG-0818	800 MHz to 1.8 GHz	< -97dBc/Hz@1.3GHz, 10kHz
USG-2030	2.0 GHz to 3.0 GHz	< -93dBc/Hz@2.5GHz, 10kHz
USG-3044	3.0 GHz to 4.4 GHz	< -88dBc/Hz@3.7GHz, 10kHz

Main Features

Performance	• Five models supporting a frequency range from 34.5 MHz to 4.4 GHz
	• 10kHz resolution
	• -30 dBm to 0 dBm output power
Features	Signal generator operation supports a plethora

of control devices:

Any java-enabled PC: Windows, Mac or Linux PCs.

Any android device that supports USB OTG (USB On The Go) operation (via Google Play).

• Continuous wave, sweep wave, frequency hopping wave, power sweep wave.

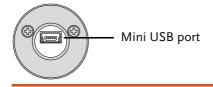
Package Contents and Standard Accessories

Standard Accessories	Part number	Description
	Region dependant Region dependant	User manual CD USB A to Mini USB cable

Optional Accessories

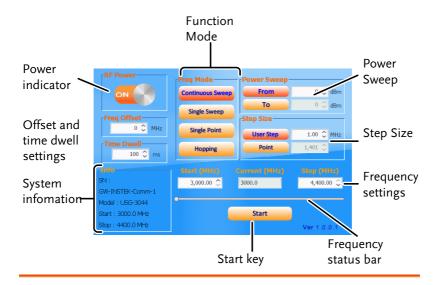
Standard Accessories	Part number	Description
	ADP-003	N female to SMA female adaptor

Appearance


Front Face

RF Output Terminal RF output port. Accepts RF outputs.

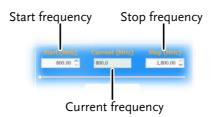
- Output: 0 ~ -30dBm
- Input impedance: 50Ω
- N-type: male


Rear Face

Mini USB port Used to connect to a PC or Android device for configuration or control.

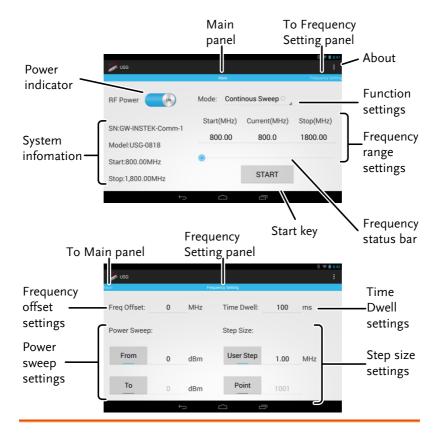
When connected to power, the mini USB port will be lit red.

Signal Generator Display - Java


Power Indicator Turns the RF output on or off.

Function Mode Chooses the type of function to be performed by the USG: Continuous Sweep, Single Sweep, Single Point or Hopping

Power Sweep Sets the Start and Stop power level settings. The *From* setting set the initial power level at the start of the sweep and the *To* setting sets the final power level at the end of the sweep.


Step Size Sets the sweep step settings

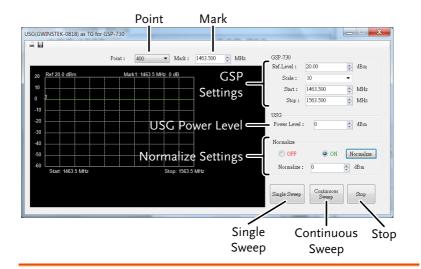
FrequencySets the basic start and stop frequency parameterSettingssettings. It also displays the instantaneous
(current) output frequency, as shown below.

Frequency Status Bar	When the output is on, the point on the frequency status bar indicates the instantaneous frequency that is being output. When the output is off, the status bar can set the start and stop frequencies.
Start key	Pressing Start will output the selected function.
System Information	The system information states the serial number, model and frequency range specifications.
Frequency Offset Settings	Offsets the frequency by ±50 kHz.
Time Dwell Settings	The time dwell settings determine how long the signal will stay (dwell) at each frequency point.
Step Size	The User Step and Point (inversely related) set the step resolution of the single and continuous sweep functions in hertz and number of points, respectively.

Signal Generator Display – Android App

Power Indicator Turns the RF output on or off.

System Information	The system information states the serial number, model and frequency range specifications.
Main panel	Indicates that the interface is in the Main panel.
To Frequency Setting panel	Indicates that swiping to the left will go to the Frequency Setting panel.


- Function Settings Chooses the type of function to be performed by the USG: Continuous Sweep, Single Sweep, Single Point or Hopping.
- Frequency RangeSets the basic start and stop frequency parameterSettingssettings. It also displays the instantaneous
(current) output frequency, as shown below.

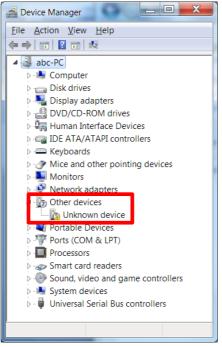
Start f	requenc I	y Stop	frequency
	Start(MHz)	Current(MHz)	Stop(MHz)
	800.00	1097.0	1800.00
	Actı	ual freque	ncy

Frequency Status Bar	When the output is on, the point on the frequency status bar indicates the instantaneous frequency that is being output. When the output is off, the status bar can set the start and stop frequencies.
Start key	Pressing Start will output the selected function.
About	Pressing About will display the GNU lesser GPL license requirements.
To Main panel	Indicates that swiping to the right will go to the Main panel.
Frequency Setting panel	Indicates that the interface is in the Frequency Setting panel.
Frequency Offset Settings	Offsets the frequency by ±50 kHz.
Power Sweep Settings	Sets the start and stop power level settings. The <i>From</i> setting sets the initial power level at the start of the sweep, and the <i>To</i> setting sets the final power level at the end of the sweep.

Time Dwell Settings	The time dwell settings determine how long the signal will stay (dwell) at each frequency point.
Step Size Settings	The User Step and Point (inversely related) set the step resolution of the single and continuous sweep functions in hertz and number of points, respectively.

Primary RF - Tracking Generator Function

Point	Sets the number of frequency points for sweep.
Mark	Sets the marker frequency.
GSP Settings	Sets the reference level, scale and start and stop frequencies.
Power Level	Sets the USG output power level.
Normalize Settings	Normalizes the USG output.
Single Sweep	Outputs a single sweep.
Continuous Sweep	Outputs a continuous sweep.
Stop	Stops the sweep output.


First Time Use Instructions

The following instructions will go over all installation instructions that are required to operate the USG from a PC or from an android device.

Installing the USG USB Driver

Description	The USG connects via USB to a PC using a virtual COM port driver.
	For Linux and OS X systems, the USG device is recognized as a virtual COM port device automatically. <i>A device driver does not need to be installed for these systems.</i>
	For Microsoft Windows operating systems, the USG will be recognized as a virtual COM port device only after the USB driver is installed.
Requirements	Operating System: Windows XP, Vista, 7, 8*
Note	*Please note that for Windows 8, "Device driver signature enforcement" must first be disabled before the driver can be installed. See page 18 for details.
Steps	 Connect the USG to the PC using the USB Type A - Mini-B cable.
	If the PC asks for the driver, please go to step 5.
	Open the Windows Device Manager. On Windows 7 for example:
	Start>Control Panel>Hardware and Sound>Device Manager

3. From the device tree go to: *Other devices>USB Serial Port*

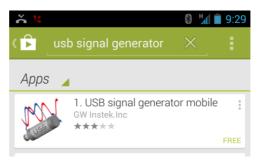
The yellow error sign indicates that a driver has not been installed.

- 4. Right-click USB Serial Port and select *Update Driver Software*.
- 5. Select *Browse* my computer for driver software when prompted.

Manually select the *USG Driver* from the User Manual CD when prompted.

If the Windows Security pop-up appears, choose *Install this driver software anyway*.

6. The USG will now become available in the device tree under PORTS (COM & LPT).


Disabling the Device Driver Signature Enforcement in Windows 8

Description	To install the USG USB driver on Windows 8 systems, you must first disable "Device driver signature enforcement". This procedure is shown below.
Note	Applicable to Windows 8 only!
Steps	 Go to the Charms bar → Click on Settings → Click on Power → Hold the SHIFT key and click Restart → Click Troubleshoot → Advanced Options → Startup Settings → Restart → Select 7) Disable driver signature enforcement.
	2. The PC will now restart.
	3. After the PC restarts, it will now be possible to install the USG USB driver on Windows 8 using the procedure shown previously.

Installing the USG Software from Google Play

Description	The USG software for controlling the USG as a signal generator can be found on the Google Play store.
Note Note	Supported for Android 4.0 and above only.
Steps	1. Open Google Play on your Android device.

2. Enter *USB Signal Generator* in the Google Play search bar.

- 3. Install the USB Signal generator mobile app (GW Instek.Inc.)
- 4. The USG app will now be available in your App Draw.

• By default, the USG app will automatically load each time the USG is attached to your USB device.

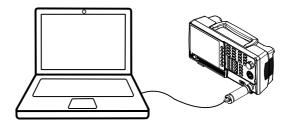
Tracking Generator Software Installation (Primary RF)

Description	Primary RF is used in conjunction with the USG as a tracking generator for the GSP-730.	
Note: Requirements	Only Windows operating systems (Windows XP, Vista, 7, 8) can be used with the Primary RF software.	
Note: USB Drivers	Before the tracking generator software can be installed, the USG USB driver must first be installed. See page 16 for details.	
	Note that the USB driver for the GSP-730's USB interface will be automatically installed when installing the Primary RF software.	
Note: NI 488.2 Software	The tracking generator function requires National Instruments NI 488.2 software to be installed. This software is available on the NI website, www.ni.com.	
Driver installation 1.	Open the User Manual CD and BrimaryRF.msi click on PrimaryRF.msi.	
2.	The Primary RF Setup Wizard will appear.	
	Follow the prompts until it is all installed.	
	Note: If the Windows Security pop-up appears, choose <i>Install this driver software anyway</i> .	

3. Primary RF will now be available in the Windows Start Menu.

OPERATION

Signal Generat	or Function	23
-	Setup ~ PC	23
	Setup ~ Android Device	24
	Frequency Function Mode	26
	Selecting the Frequency	27
	Selecting the Frequency Step Size	28
	Time Dwell	29
	Frequency Offset	30
	Selecting the Power Sweep	31
	Turning the Output On	32
Tracking Gener	ator Function (Primary RF Software)	33
-	Setup	33
	Tracking Generator Setup	34
	Normalizing the Tracking Generator	36
	Using the Tracking Generator	38
	Save Results - CSV	39
	Save Results - Print	40


Signal Generator Function

The signal generator function can be controlled with PC using a java program (using Windows, Mac OS X or Linux operating systems) or with an Android device.

Setup)~	PC
-------	----	----

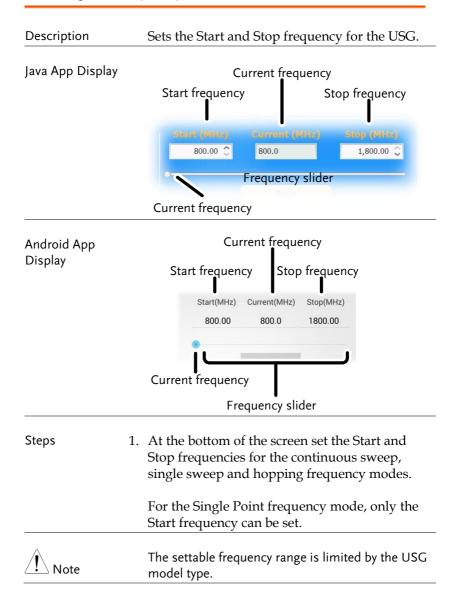
Description	The following chapter will show how to run the Java based application and the how to connect
	the USG to the PC.
	Any Windows, Mac OS X or Linux PC that can install the Java runtime library can be used to operate the signal generator function.
Note Note	The Java runtime needs to be installed before continuing. Visit <u>www.java.com</u> to download and install the Java Runtime.
Note	For Windows, the USG USB driver must first be installed. See page 16 for details. Mac OS X and Linux systems do not need to install this driver.
Connection	1. Connect the USG to the RF port of the GSP-730.
	2 Compared the DC to the LICC order of Toma A

2. Connect the PC to the USG using a Type Amini USB cable.

- 3. Open USG_GUI_v1001.jar file (accessible on the User Manual CD).
- The USG_GUI_v1001 file doesn't need to be installed.
- 4. If it is not already, turn the RF power on for the USG.

Description	The following chapter will show how to start up and connect the USG to an Android device.
Note	Install the USB signal generator software before connecting the USB to your Android device. See page 18.
Connection	1. Connect the USG to the RF port of the GSP-730.
	2. Connect the Android device to a USB OTG cable.
	3. Connect the OTG cable to the USG using a Type A-mini USB cable.

- 4. By default, the USG app should load up when the Android device is connected to the USG.
 - If the app does not automatically load up, go to the app drawer and run the USB signal generator app.
- 5. If it is not already, turn the RF power on for the USG.


If the USB cable is not connected properly, the system information in the Main panel will show "NONE". In this case, re-insert the USB cable and the OTG cable.

Frequency Function Mode

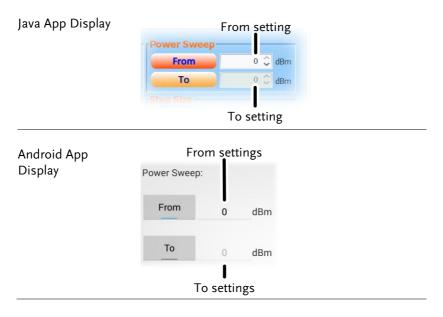
Description	There are four d can be selected.	ifferent frequency modes that
Java App Display	Function Mo	eep Pow
Android App Display	Function Mode: Continous	
Steps	,	panel(Java)/ <i>Mode</i> drop-down elect the frequency function
	Continuous Swee	p: Outputs a continuous sweep
	Single Sweep:	Outputs a single sweep
	Single Point:	Outputs a single frequency
	Hopping:	Frequency hops between two frequencies

Selecting the Frequency

Selecting the Frequency Step Size

Description	The step size setting frequency points for	gs determine the number of r the sweep modes.
Java App Display	Step Size User Step 1.0 Point 1,00 Number of	0 ♀ MHz 1 ♀
Android App Display	Step Size: Step size	s
	· · · ·	
Steps	1. To set the span of ea <i>User Step</i> .	ach step of a sweep, press
	2. To set the number of press <i>Point</i> .	f discrete steps in a sweep,
	-	ints or the frequency span ads on the USG model.
	User Step range	0.01MHz~100 MHz
	Point range	(Frequency span of USG model / User Step range) + 1 = Point range

Time Dwell


Description	The Time Dwell setting determines the amount of time between each point in a sweep.	
Java App Display	Time Dwell	
Android App Display	Time Dwell: 100	ell
Steps	 Press Time Dwell to set the amount of time between each step in milliseconds. The Time Dwell setting range depends on the on the USG model. 	
	Time Dwell	1ms~ 1000ms
<u>∕</u> ! Note		ep time is automatically set by the ns Time Dwell can only be ast system.

Frequency Offset

Description	The Frequen frequency by	cy Offset setting will offset the ±0.05 MHz.
Java App Display	Freq Offset	
Android App Display	Freq Offset:0	MHz y Offset
Steps	1. Press Freq O frequency se	ffset to set an offset to the ttings.
	Offset	± 0.05 MHz

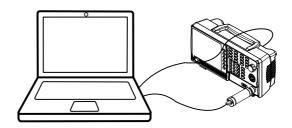
Selecting the Power Sweep

Description	Sets the power level for the start and stop frequencies.
	For the sweep functions, sets the power level from the Start frequency to the Stop frequency.
	For the Single Point function, the <i>From</i> setting sets the initial power level and the <i>To</i> setting, if needed, sets the final power level.
	For the Hopping function, the <i>From</i> setting sets the power level of the Start Frequency and the <i>To</i> setting set the power level at the Stop frequency.

Android App Display	Start J START
Java App Display	Start Start
Steps	After all the settings have been set press Start to turn on the output on. For the single sweep function, press Start for each single sweep.
Turning the O	utput On
	Power level range 0dBm ~ -30dBm
	• If you only want one power level, only set the <i>From</i> setting.
	2. To set the final power level press <i>To</i> .
Steps	1. To set the initial power level, press <i>From</i> .

Tracking Generator Function (Primary RF Software)

The Primary RF software can be used as a tracking generator for the GSP-730 to track the frequency response of a DUT.



Please note that the Primary RF software has multiple functions and can be used for purposes other than as tracking generator software for the GSP-730. The other software functions are beyond the scope of this manual and will not be detailed.

Setup

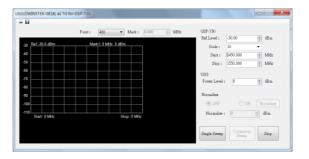
Description	The following chapter will show how to connect the USG to the GSP-730 and to the host PC when using the USG as a tracking generator. To use the USG as a tracking generator, the Primary RF software must be used. See page 20 for installation details.
Connection	1. Connect the USG to the RF port of the GSP-730.

- 2. Connect the PC to the USG using a Type Amini USB cable.
- 3. Connect the PC to the rear-panel USB B port on the GSP-730 using a Type A-Type B USB cable.

Tracking Generator Setup

Description		The section will describe how to use the USG as a tracking generator for the GSP-730.
Operation	1.	Launch PrimaryRF.

2. Click on the large GSP-730 button at the top of the window.


The spectrum analyzer settings will be shown* when the connection to the GSP-730 is working.

*Note: The above GSP-730 frequency and amplitude settings as well as the Capture function are not used for the tracking generator function and are thus not used in this manual. Using these functions is beyond the scope of this user manual. 3. Press *Action(A)* and select *USG as TG for GSP-*730.

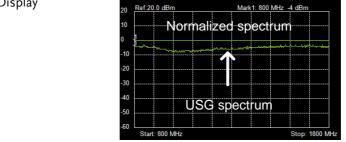
A new window will open for the tracking generator options.

- 4. Press *Point* and set the number of frequency points that will be used in the sweep.
- 5. Press *Mark* and set the marker frequency.
- The marker frequency and amplitude will be shown at the top of the grid.

- 6. Under the GSP-730 panel set the basic spectrum analyzer settings:
 - •Ref.Level: -40 ~ 20 dBm
 - •Scale: 1~10
 - •Start frequency: Dependent on the connected USG model
 - •Stop Frequency: Dependent on the connected USG model

-GSP-730		
Ref.Level :	20.00	🚔 dBm
Scale :	10	•
Start :	1463.500	MHz
Stop :	1563.500	MHz

- 7. Set the USG power level:
 - •Power Level: $0 \sim -30 \ dBm$

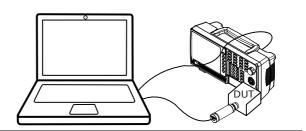

USG		
Power Level :	0	🍦 dBm

Normalizing the Tracking Generator

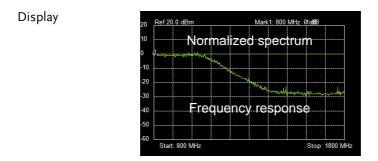
Description	The tracking generator should first be normalized before a DUT is connected to the USG.
Operation	1. Setup Primary RF as shown above.

- 2. Press Single Sweep and perform a single sweep.
 - •*It may take some time to complete a full sweep,* depending on the fixed RBW (1MHz) and span 100MHz settings.
 - The Normalize panel will be selectable after the first sweep is performed.
- 3. Press Normalize after a full sweep has been performed. The Normalize radio button will then automatically be set to ON.
 - This will normalize the USG output for the Primary RF software.
- 4. Set the normalized amplitude level.
 - •Normalize: $0 \sim -30 dBm$.

Normalize			
OFF) ON	Normalize
Normalize :	0		🚔 dBm


Display

Note


Before performing normalization, make sure the USG has been on for at least 30 minutes to eliminate drift from effecting the normalization.

Using the Tracking Generator

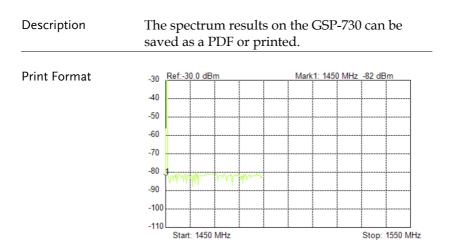
Description After normalization is performed, the USG can be used to measure the frequency response of a DUT.

- Operation 1. Remove the USG from the GSP-730 and put the DUT between the USG and the GSP-730 RF ports.
 - 2. Press *Sweep* or *Continuous* sweep to get the frequency response of the DUT.

Example: Low pass filter frequency response.

Save Results - CSV

Description	The spectrum results on GSP-730 can be saved as a CSV file.


CSV File Format	Center frequency				
	Point number		A A	mplitude	
			B14	•	f_{x}
			A	В	С
		- 1	1450000000	-82	
		2	1450250000	0	
		3	1450500000	0	
		4	1450750000	-82	

- Operation 1. Perform either a sweep or a continuous sweep, as shown above. See page 38 for details.
 - 2. After the sweep has completed, press the disk drive icon on the top left-hand side.

3. A pop-up window will now appear. Choose a file name and directory and select *Save*.

Save Results - Print

Results are printed in an inverted color format.

- Operation 1. Perform either a sweep or a continuous sweep, as shown above. See page 38 for details.
 - 2. After the sweep has completed, press the print icon on the top left-hand side.

- 3. A pop-up window will now appear. Choose a printer or choose to save as a PDF.
- 4. Press *Print* to print the results.

Faq

- The USG will not connect to the PC.
- Primary RF will not allow me to connect to the GSP-730.
- The performance does not match the specification.

The USG will not connect to the PC.

If you are running a Windows system, make sure that the USG USB driver has been installed correctly, see page 16 for details. If you are running Windows 8, please make sure that "Device driver signature enforcement" is disabled before installing the driver, see page 18 for details.

Primary RF will not allow me to connect to the GSP-730.

Make sure that all the USB cables from the USG and GSP-730 are connected correctly, then make sure that the NI.488.2 software is installed before Primary RF is installed. See page 20 for installation details.

The performance does not match the specification.

Make sure the device is powered On for at least 30 minutes, within $+20^{\circ}C^{+}30^{\circ}C$. This is necessary to stabilize the unit to match the specification.

For more information, contact your local dealer or GWInstek at www.gwinstek.com / marketing@goodwill.com.

USG Specifications

The specifications apply when the USG is powered on for at least 30 minutes to warm-up to a temperature of 20°C to 30°C, unless specified otherwise.

USG-LF44

Frequency Range	34.5 MHz to 4.4 GHz	
Output Power	-30 dBm to 0 dBm	in 1 dB steps
Internal Reference	25 MHz	aging ±1 ppm at first year
Frequency Accuracy	± 100 Hz	at 100 MHz, 0 dBm Output
Resolution	10 kHz	
Output Control	On / Off	
On / Off Isolation	≤ -75 dBc	
Mode Control	Fixed Frequency / Sin	gle Sweep / CW Sweep / Hopping
Step Dwell	\leq 1000 ms in 1* ms s	teps
Frequency Offset	-50 kHz to 50 kHz in	10 kHz steps
Amplitude Absolute	0 dBm ± 1 dB typical	at 2200MHz, 0 dBm Output
Accuracy		
Output Flatness	± 3.5 dB, ref. to	at 0 dBm Output
	2200MHz	
Phase noise	< -97 dBc/Hz	10 kHz offset @ 1.0 GHz, typical
		-100 dBc/Hz
	< -107 dBc/Hz	100 kHz offset @ 1.0 GHz,
		typical -110dBc/Hz
2nd Harmonics		0 dB Attenuation
	\leq -15 dBc, typical	34.5 MHz to 2.0 GHz,
		fundamental
	\leq -10 dBc, typical	2.0 GHz to 3.0 GHz,
		fundamental
	\leq -25 dBc, typical	3.0 GHz to 4.4 GHz,
		fundamental

GWINSTEK

3rd Harmonics		0 dB Attenuation
	\leq -5 dBc, typical	34.5 MHz to 2.0 GHz,
		fundamental
	\leq -20 dBc, typical	2.0 GHz to 3.0 GHz,
		fundamental
	\leq -40 dBc, typical	3.0 GHz to 4.4 GHz,
		fundamental
Spurious related to	\leq -30 dBc, typical	Resolution < 1 MHz
Resolution settings	\leq -65 dBc, typical	Resolution \geq 1 MHz
(Single Point Mode)		
Spurious related to the	\leq -60 dBc, typical	
fundamental output		
(Single Point Mode)		

USG-0103

Frequency Range	100 MHz to 300 MH	Ηz
Output Power	-30 dBm to 0 dBm	in 1 dB steps
Internal Reference	25 MHz	aging ±1 ppm at first year
Frequency Accuracy	± 100 Hz	at 100MHz, 0 dBm Output
Resolution	10 kHz	
Output Control	On / Off	
On / Off Isolation	≤ -75 dBc	
Mode Control	Fixed Frequency / Si	ingle Sweep / CW Sweep / Hopping
Step Dwell	\leq 1000 ms in 1* ms	steps
Frequency Offset	-50 kHz to 50 kHz ir	n 10 kHz steps
Amplitude Absolute	-1.2 dBm ± 1 dB	at 150 MHz, 0 dBm Output
Accuracy	typical	
Output Flatness	± 1 dB, ref. to 150 MHz	at 0 dBm Output
Phase noise	< -100 dBc/Hz,	10 kHz offset @ 200 MHz
	typical	
	< -110 dBc/Hz	100 kHz offset @ 200 MHz
2nd Harmonics		0 dB Attenuation
	\leq -45 dBc, typical	> 100 MHz, fundamental
3rd Harmonics		0 dB Attenuation
	\leq -7dBc, typical	\leq 150 MHz, fundamental
	\leq -35 dBc, typical	> 150 MHz, fundamental
Spurious related to	\leq -30 dBc, typical	Resolution < 1 MHz
Resolution settings	\leq -65 dBc, typical	Resolution \geq 1 MHz
(Single Point Mode)		
Spurious related to the	\leq -60 dBc, typical	
fundamental output		
(Single Point Mode)		

USG-0818

800 MHz to 1.8 GHz	
-30 dBm to 0 dBm	in 1 dB steps
25 MHz	aging ±1 ppm at first year
± 800 Hz	at 800MHz, 0 dBm Output
10 kHz	
On / Off	
≤ -75 dBc	
Fixed Frequency / Sir	ngle Sweep / CW Sweep / Hopping
≤ 1000 ms in 1* ms s	steps
-50 kHz to 50 kHz in	10 kHz steps
-0.8 dBm ± 1 dB	at 1000 MHz, 0 dBm Output
typical	
± 1 dB, ref. to	at 0 dBm Output
1000MHz	- -
< -97 dBc/Hz	10 kHz offset @ 1.3 GHz
< -102 dBc/Hz	100 kHz offset @ 1.3 GHz
	0 dB Attenuation
\leq -25 dBc, typical	>800 MHz, fundamental
	0 dB Attenuation
\leq -25 dBc, typical	≤900 MHz, fundamental
\leq -35 dBc, typical	>900 MHz, fundamental
\leq -30 dBc, typical	Resolution < 1 MHz
\leq -65 dBc, typical	Resolution \geq 1 MHz
\leq -65 dBc, typical	
	$\begin{array}{r} -30 \text{ dBm to 0 dBm} \\ \hline 25 \text{ MHz} \\ \pm 800 \text{ Hz} \\ \hline 10 \text{ kHz} \\ \hline 0n / \text{ Off} \\ \leq -75 \text{ dBc} \\ \hline \text{Fixed Frequency / Sir} \\ \leq 1000 \text{ ms in 1* ms} \\ \leq 1000 \text{ ms in 1* ms} \\ \hline 50 \text{ kHz to 50 kHz in} \\ \hline -0.8 \text{ dBm } \pm 1 \text{ dB} \\ \hline \text{typical} \\ \pm 1 \text{ dB, ref. to} \\ \hline 1000 \text{ MHz} \\ < -97 \text{ dBc/Hz} \\ < -102 \text{ dBc/Hz} \\ \leq -25 \text{ dBc, typical} \\ \leq -25 \text{ dBc, typical} \\ \leq -35 \text{ dBc, typical} \\ \leq -30 \text{ dBc, typical} \\ \leq -65 \text{ dBc, typical} \\ \end{array}$

USG-2030

Frequency Range	2.0 GHz to 3.0 GHz		
Output Power	-30 dBm to 0 dBm	in 1 dB steps	
Internal Reference	25 MHz	aging ±1 ppm at first year	
Frequency Accuracy	± 2 kHz	at 2 GHz, 0 dBm Output	
Resolution	10 kHz		
Output Control	On / Off		
On / Off Isolation	≤ -75 dBc		
Mode Control	Fixed Frequency / Single Sweep / CW Sweep / Hopping		
Step Dwell	≤ 1000 ms in 1* ms	≤ 1000 ms in 1* ms steps	
Frequency Offset	-50 kHz to 50 kHz ir	-50 kHz to 50 kHz in 10 kHz steps	

G≝INSTEK

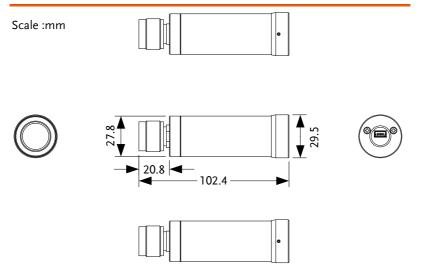
Amplitude Absolute Accuracy	0 dBm ± 1 dB typical	at 2500 MHz, 0 dBm Output
Output Flatness	± 1 dB, ref. to 2500MHz	at 0 dBm Output
Phase noise	< -93 dBc/Hz < -100 dBc/Hz	10 kHz offset @ 2.5 GHz 100 kHz offset @ 2.5 GHz
2nd Harmonics	\leq -30 dBc, typical	0 dB Attenuation 2.0 GHz to 3.0 GHz, fundamental
3rd Harmonics	\leq -45 dBc, typical	0 dB Attenuation 2.0 GHz to 3.0 GHz, fundamental
Spurious related to	\leq -30 dBc, typical	Resolution < 1MHz
Resolution settings (Single Point Mode)	\leq -65 dBc, typical	Resolution \geq 1MHz
Spurious related to the fundamental output (Single Point Mode)	\leq -65 dBc, typical	

USG-3044

Frequency Range	3.0 GHz to 4.4 GHz		
Output Power	-30 dBm to 0 dBm	in 1 dB steps	
Internal Reference	25 MHz	aging ±1 ppm at first year	
Frequency Accuracy	± 3 kHz	at 3 GHz, 0 dBm Output	
Resolution	10 kHz		
Output Control	On / Off		
On / Off Isolation	≤-75 dBc		
Mode Control	Fixed Frequency / Single Sweep / CW Sweep / Hopping		
Step Dwell	\leq 1000 ms in 1* ms steps		
Frequency Offset	-50 kHz to 50 kHz in	-50 kHz to 50 kHz in 10 kHz steps	
Amplitude Absolute	1 dBm ± 1 dB typical	at 3300 MHz, 0 dBm Output	
Accuracy			
Output Flatness	\pm 2 dB, ref. to	at 0 dBm Output	
	3300MHz		
Phase noise	< -88 dBc/Hz	10 kHz offset @ 3.7 GHz	
	< -94 dBc/Hz	100 kHz offset @ 3.7 GHz	
2nd Harmonics		0 dB Attenuation	
	\leq -25 dBc, typical	3.0 GHz to 4.4 GHz,	
		fundamental	
3rd Harmonics		0 dB Attenuation	
	\leq -40 dBc, typical	3.0 GHz to 4.4 GHz,	
		fundamental	

GWINSTEK

Spurious related to	\leq -30 dBc, typical	Resolution < 1MHz	
Resolution settings	\leq -65 dBc, typical	Resolution \geq 1MHz	
(Single Point Mode)			
Spurious related to the	\leq -65 dBc, typical		
fundamental output			
(Single Point Mode)			


*: Minimum step depands on the computer being used. This min. step will be automatically adjusted by the PC software. 1ms is achieved on a faster system.

Common Specifications

Software for PC:		
a. Primary RF suppor	rts operating system	: Windows 2000/XP/Vista/7/8
b. Java USG Control	Panel: Windows 200	0/XP/Vista/7/8 Linux/OS X
Software for mobile devi	ce:	
For Android 4.0 and	higher with OTG*	
Interface	USB 2.0	
USB Connector Type	Mini-B	
Supply Voltage	5V	nominal
RF Connector Type	N-type male	
Impedance	50 ohm	nominal
Output VSWR	< 1.5:1	Output level @ -30dBm
Max. DC voltage	+/-25VDC	
connected to output		
Max. Reverse Power	+30dBm	

*Warning: Some Android devices with OTG support cannot run the USG app due to the OTG driver modifications by vendors.

USG Dimensions

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Rd, Tucheng Dist., New Taipei City 236, Taiwan

GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.

No. 69 Lushan Road, Suzhou New District Jiangsu, China.

declare that the below mentioned products

Type of Product: USB Signal Generator

Model Number: USG-LF44, USG-0103, USG-0818, USG-2030, USG-3044 are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Laws of the Member States relating to Electromagnetic Compatibility (2004/108/EEC).

For the evaluation regarding the Electromagnetic Compatibility, the following standards were applied:

0	EMC
---	-----

EN 61326-1: EN 61326-2-1:	Electrical equipment for measurement, control and laboratory use EMC requirements (2006)	
Conducted and Radiat EN 55011:2009+A1	Radiated EmissionsElectrostatic Discharge9+A1:2010 Group 1 Class AEN 61000-4-2: 2009	
		Radiated Immunity EN 61000-4-3: 2006+A1: 2008+A2 :2010
		Voltage Dip/ Interruption EN 61000-4-11: 2004

NDEX

Accessories8
Caution symbol2
Cleaning the instrument
Declaration of conformity
Display diagram
Android
Java10
Primary RF
Tracking generator15
Disposal instructions4
Disposal symbol2
Environment
Safety instruction3
FAQ
First time use instructions 16
Front face9
Ground
Symbol2
List of features7
Marketing
Contact
Model differences7
NI Software
NI 488.2 software 20
Operation
Signal Generator
Power on/off
Safety instruction
Primary RF
Installation
Rear face9
Service operation
1

About disassembly	3
Contact 4	
Signal Generator	
Android setup 2	24
Frequency 2	27
Frequency offset 3	30
Function mode 2	26
Output3	32
PC setup 2	23
Power sweep 3	31
Step size 2	28
Time dwell 2	<u>9</u>
Specifications4	2
Common 4	46
Dimensions 4	ł7
USG-0103 4	1 3
USG-0818 4	4
USG-2030 4	4
USG-3044 4	45
USG-LF44 4	12
Tracking Generator	
normalizing 3	36
operation3	
Primary RF setup3	33
Print results 4	40
save results 3	39
Setup	
hardware	
software	34
USB driver	
Installation16, 1	.8
USG	
Google Play installation 1	
Warning symbol	2