
HORIBA Scientific

—Water Quality Measurements Made Easy

HORIBA

Explore the future

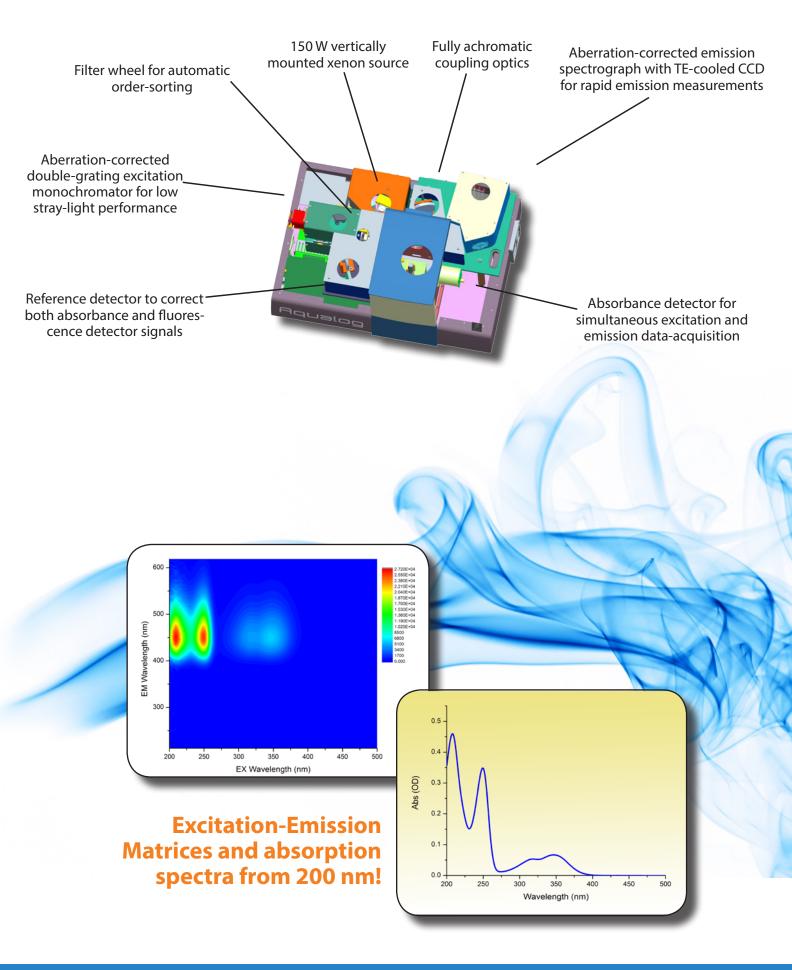
Water quality measurements made easy

The only simultaneous absorbance and fluorescence system for water quality analysis!

HORIBA

Adralog

HORIBA


The new Aqualog is the only instrument to simultaneously measure both absorbance spectra and fluorescence Excitation-Emission Matrices. EEMs are acquired up to 100 times faster than with other instruments. Dedicated software automates traceable Quinine Sulfate Unit calibration and correction of inner-filter effects and Rayleigh and Raman scattering lines, enabling rapid export to multivariate modeling programs including our partner, Solo, by Eigenvector Research, Inc.

Hardware features

- The only true simultaneous absorbance-fluorescence system available
- TE-cooled CCD fluorescence emission detector for rapid data-acquisition up to 100 times faster than any other benchtop fluorometer
- Corrected UV-VIS absorbance detection path for stability and accuracy
- Double-grating excitation monochromator for superior stray light rejection
- Matching bandpass for absorbance and fluorescence spectra
- Automatic sample changer option (2- or 4-position)
- Compatible with flow cells and titrator

Full suite of performance validation tests

- NIST Fluorescence Standard Reference Materials for spectral calibration and correction (SRMs: 2940, 2941, 2942, 2943)
- Starna® Standard Reference Material for Quinine Sulfate Fluorescence Emission Spectral Correction (RM-QS00)
- NIST Absorbance Standard Reference Materials for Ultraviolet-Visible Spectrophotometry (SRM 931g)
- Starna® Standard Reference Materials for Ultraviolet-Visible Spectrophotometry (RM-06HLKI)
- Water Raman signal-to-noise evaluation

Explore the future

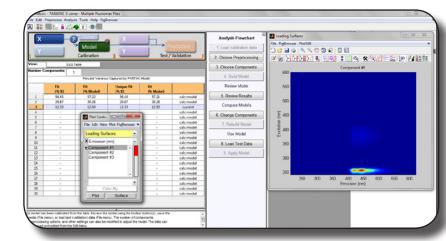
Software Features

- Optimized experiment set-up menus minimize user configuration time
- Complete NIST-traceable corrected fluorescence spectra automatically generated
- Spectral and kinetic analysis tools for both absorbance and fluorescence data
- Methods and batch protocols for automating multiple sample measurement

Experimental Menu

- Absorbance spectra
- Absorbance kinetics
- Fluorescence emission spectra
- Fluorescence emission spectra kinetics
- Combined fluorescence emission spectra and absorbance kinetics
- Fluorescence excitation-emission matrices (EEMs)
- Combined excitation-emission matrices and absorbance spectra
- Trigger-enabling
- Sample Queue tool for collection of continuous EEMs plus absorbance spectra, correction, and export for up to 1000 samples without interruption. Compatible with multi-position sample changers, operation of flow-through cells and autosamplers. Automated generation of component identification and quantification tables using Eigenvector's Solo Predictor package!

Built-in Tools for EEM Analysis


- Correction of inner-filter effects
- Rayleigh-masking of first and second orders
- Normalization (Quinine Sulfate Units or Raman scattering units)
- Multivariate analysis, including PARAFAC (parallel factor analysis)
- Batch export of EEMs
- · 2-Dimensional excitation and emission extraction of spectral profiles from EEMs

Multivariate Analyses with Our Partner, Eigenvector

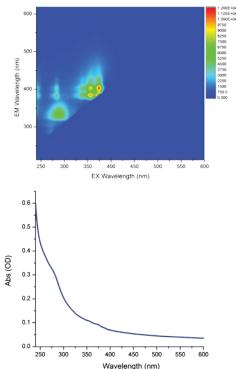
Save hours of data processing with the combined power of HORIBA Scientific's new Aqualog[®] and Eigenvector's Solo software! Simply import your fully corrected excitation-emission matrix (EEM) data directly from the HORIBA Scientific Aqualog[®] into Eigenvector's Solo software to rapidly perform PARAFAC and many other multivariate analyses pertinent to colored dissolved organic matter (CDOM).

The Aqualog[®] package performs all necessary spectral corrections. Quickly assemble EEMs into convenient DataSet objects to easily manage labels, axis scales, and classes, and include or exclude data from the analysis with a simple click.

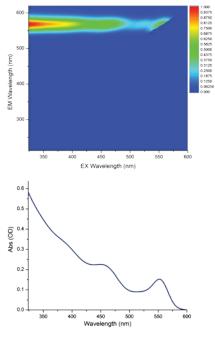
Solo provides the graphical interfaces to quickly manage and analyze EEM data, create and apply models, and interpret results.

				19 <u></u>			
Sample Q File					Load		
C\Users\Public\Doc	uments\Jobin Yvon\	Data Viqualog Sample	Q aqu		Save	Save As	
Experiment File							
C:\Users\Public\Doc	uments\Jobin Yvon\	Data\DftAqualogThr	eeDCCDAbs.xml		srowse	Create	
Comment							
Autput File Names							
Blank Group Prefix	Blank Base	Sample Prefix	Example	Group001Blank.ogw Group001Sample0001.ogw			
Group	Blank	Sample	Output:	Group001Sample00 Group001Sample00	01ABS.dat		
Output Folder							
C.\Users\Public\Doc	uments\Jobin Yvon\	Data				Browse	
ample Setup Number of Blank Gro	ups 1 💠	Samples Per Blan	k 1 🔯	Delays Before First Blank	0	50C5 -	
Blank Group Start #	1 🔃	Sample Start #	1 +	Between Each	0	5000 T	
Total Samples: 2		Sample Start =		Experiment	U	secs •	
Total Samples: 2							
ost Processing Option	na -		Export Options				
IFE Rayleigh Masking Ist Order SUM of slit widths			Save Raw Data in Workbook Format (".ogw)				
			Export ASCII				
(2nd Order	10	Save ASCII (
	1st Order & 2nd Order		Worksheets		mple - Blank		
			V ABS		XYY	XYZ	
Normalize			E Blank XY	y Si	mple - Blank	Processed	
C max	Easter 1		Sample >		XXX S	XYZ	
Normalization	ALL BOOM I		C vanges /				

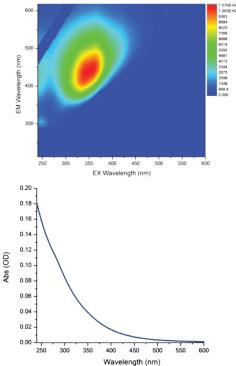
Measure the full UV to NIR spectrum of water contaminants

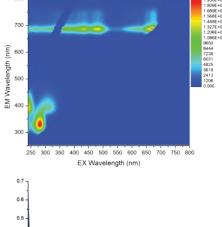

Ideal for quantitative hydrologic studies with tracer dyes, using:

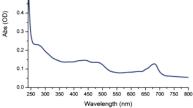
- Resazurin-resorufin
- Fluorescein
- Rhodamine
- Pyranine


CDOM applications:

- Membrane fouling (microfiltration, reverse osmosis)
- Microbial and algal activity
- Carbon fate and cycling activity


Oils and PAHs


Quantum Dots



CDOM

Chlorophyll from Algae

Fluorescence Hardware Specifications

Parameter	Specification	Specification			
Choice of light source	Standard: 150 W ozone-free vertically mounted xenon arc lamp	Extended-UV: 150 W vertically mounted xenon arc lamp			
Excitation range	230 nm to upper limit of emis- sion detector	200 nm to upper limit of emis- sion detector			
Excitation bandpass	5 nm	5 nm			
Excitation monochromator	Subtractive double monochrom	Subtractive double monochromator			
Excitation gratings	1200 gr/mm; 250 nm blaze	1200 gr/mm; 250 nm blaze			
Excitation wavelength accuracy	±1 nm	±1 nm			
	· · · · · · · · · · · · · · · · · · ·				
Choice of detector	UV-Visible	Red-extended			
Emission range	250–620 nm	250–800 nm			
Emission grating	405 gr/mm; 250 nm blaze	285 gr/mm; 350 nm blaze			
Hardware pixel-binning	0.41, 0.82, 1.64, 3.28 nm/pixel	0.58, 1.16, 2.32, 3.64 nm/pixel			
Emission bandpass	5 nm	5 nm			
Emission spectrograph	Fixed, aberration-corrected 140	Fixed, aberration-corrected 140 mm focal length			
Emission detector	TE-cooled back-illuminated CCD	TE-cooled back-illuminated CCD			
Emission integration time	5 ms minimum	5 ms minimum			
CCD gain options	2.25 e⁻/cts in high gain, 4.5 e⁻/ct	2.25 e ⁻ /cts in high gain, 4.5 e ⁻ /cts in medium gain,			
	9 e⁻/cts in low gain				
Sensitivity	Water-Raman SNR > 20 000:1 (R	Water-Raman SNR > 20 000:1 (RMS method)			
	(350 nm excitation, 30 s integrat	ion)			
Weight	33 kg (72 lbs)	33 kg (72 lbs)			
Dimensions	L × W × H (618 × 435 × 336 mm)	L × W × H (618 × 435 × 336 mm); (24" × 17" × 13")			

Absorbance Hardware Specifications

Parameter	Specification	
Scanning range	200–800 nm (UV lamp)	
	230–800 nm (Standard lamp)	
Bandpass	5 nm	
Slew speed	Maximum 500 nm/s	
Optical system	Corrected single-beam	
Detector	Si photodiode	
Wavelength accuracy	±1 nm	
Wavelength repeatability	+/- 0.5 nm	
Photometric accuracy	±0.01 AU from 0 to 2 A	
Photometric stability	<0.002 AU per h	
Photometric repeatability	+/- 0.002 AU (0 to 1 AU)	
Stray light	<1% measured with KI standard	Technology

- 11