使用说明书 OPERATION MANUAL

TH2689/TH2689A 型 漏电流/绝缘电阻测试仪

TH2689/TH2689A

Capacitor Leakage Current/IR Meter

版本历史:

本说明书将不断完善以利于使用。

由于说明书中可能存在的错误或遗漏,仪器功能的改进和完善,技术的更新及软件的 升级,说明书将做相应的调整和修订。

请关注所使用的软件版本及说明书版本。

2008年3月	第一版
2009年4月	第二版
2009年8月	第三版
2010年7月	第四版
2013年3月	第五版
2014年9月	第六版

第六版

二零一四年九月

一声明:本公司可能对该产品的性能、功能、软件、结构、外观、附件、包装以 及说明书等进行完善和提高,恕不另行通知!如造成疑惑,请与本公司联系。 安全警告:

Ψ.	仪器接地	本仪器为 I 类安全仪器,连接电源时,请确认电源插 座含有接地线。如未接地,则机壳上则有带静电或感应电 的危险,可能会造成人身伤害!
~	触电危险	操作,测试与与仪器维护时谨防触电,非专业人员请 勿擅自打开机箱,专业人员如需更换保险丝或进行其它维 护,务必先拔去电源插头,并在有人员陪同情况下进行。 即使已拔去电源插头,电容上电荷仍可能会有危险电压, 应在放电后再行操作。
×	电击损害	任何在测试过程中不正确取下或加上被测件会由于测试 端的高压造成人身、财物、仪器的异常损害!!! 因为不正常的操作造成仪器的损坏由客户负责维修费用。 详见 1.2.4 章节
\sim	输入电源	请按本仪器规定的电源参数要求使用电源,不符合规 格的电源输入可能损坏本仪器。
*#	远离爆炸 性气体环 境	电子仪器不可以在易燃易爆气体环境中使用,或者在 含有腐蚀性气体或烟尘环境中使用,因为这可能会带来危 险。
	其它安全 事项	请不要向本仪器的测试端子以及偏置源监测端子施 加任何电压源或电流源。 使用外部偏置电流源或电压源测试时,必须有隔离措 施。
(B)	提示	对所阐述内容的重要补充或提醒

킆
X

目

<u>第</u> 一	·章	概	述		••••••	••••••	•••••••	·····1
1.1	引	言	••••••		•••••	•••••	••••••	1
1.2	使	用条件·	••••••		•••••	•••••	••••••	2
1.2.	1	电源 🖊	/					2
1.2.	2	环境温	度与湿度					2
1.2.	3	预热						2
1.2.	4	几点注:	意问题 🖄					2
1.3	体	积与重量	≹ ······		••••••	••••••	••••••	3
1.4	安	全要求・	•••••		••••••	••••••	••••••	3
1.4.	1	绝缘电	狙					3
1.4.	2	绝缘强	度			••••••		3
1.4.	3	泄漏电	流					3
1.5	电	磁兼容性	生		•••••	•••••	••••••••••••••	3
第二	童	面板说明	归		••••••	••••••	••••••	4
			•					
21	前足	市板说明						····· ⁄/
2.1	비미	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
2.2	лци	4100 00 70						
<u>۸۲</u>	- 	住田治	a					-
<u> </u>	.早	<u> </u>	円	•••••••••••••••••••••••••••••••	••••••	••••••••••		······/
3.1	待》	则物(DU	T)的连接·	••••••••••••••••••••••••	••••••	•••••	••••••	7
3.2	操作	F详解····	·····		••••••	•••••	••••••	8
3.2.	1 3	E功能选	择页面(MA	IN INDEX)				8
3.2.2	循	序自动》	则试页面(S	EQ. TEST)			•••••	
3.2.	2.1	\leq SEQ.	TEST>页面	•••••			•••••	9
3.2.	2.2	显示资	料说明					10
3.2.	2.3	设定测	试参数说明					10
3.2.3	甲	步手动测	则试页面					
3.2.	3.1	〈STEP	TEST> 页面·					
3.2.	3.2	· 设定参	·数说明				•••••	15
3.2.4	连	续目动》	则试页面 					
3.2.	4.1	<cont< th=""><th>TEST> 页面 ·</th><th></th><th></th><th>••••••</th><th>••••••</th><th></th></cont<>	TEST> 页面 ·			••••••	••••••	
3.2.	4.2	· 伐定参					•••••	
3.2.5	5 归	零 测试 ʃ	〔 面 <i>玉玉</i>			••••••	••••••	
3.2.	5.1	<null></null>	贝田					17
3.2.	5.2	参数设	置					
3.2.6) 铝	滔时压测	则试贝面	••••••	••••••		•••••	

TH2689/89A 使用说明书	目录
3.2.6.1 <w.v. test="">页面</w.v.>	18
3.2.6.2 设定参数与显示参数说明	19
3.2.6.3 参数设置	19
3.2.6.4 <w.v. test="">测试注意</w.v.>	····21
3.2.7 比较功能设置页面	····21
3.2.7.1 <compare>页面</compare>	····21
3.2.7.2 参数设置	22
3.2.8 文件存储页面	23
3.2.8.1 〈FILE〉页面	23
3.2.8.2 文件存储操作	23
3.2.9 系统配置页面	24
3.2.9.1 系统参数设置	25
<u> 第四章</u> 测试性能 ····································	·····37
4.1 漏电流/绝缘电阻测试(L.C./I.R. TEST)	
4.1.1 测量参数	37
4.1.2 测量信号	37
4.1.3 测量基本精度	38
4.1.4 显示范围	38
4.1.5 测量时间	38
4.1.6 归零 (NULL)	38
4.2 耐电压测量(W.V. TEST)	38
4.2.1 测量参数	38
4.2.2 测量信号	38
4.2.3 显示范围	39
<u>第五章</u> 远程控制 ····································	40
5.1 RS232C 接口说明	40
5.1.1 RS232C 接口简介	40
5.1.2 与计算机通讯	41
5.2 GPIB 接口说明 ·······	42
5.2.1 GPIB 总线	42
5.2.2 GPIB 接口功能 ·······	44
5.2.3 GPIB 地址	45
<u> 第六章</u> 命令参考	46
6.1 公用命令说明	46
6.2 SCPI 指令结构	47
6.2.1 指令结构说明	48

FH2689/89A 使用说明书 目	录
6.3指令语法	49
6.4 SCPI 指令说明	50
5.4.1 ABORT 指令系统	50
5.4.2 CALCULATE 指令系统	50
5.4.3 DISPLAY 指令系统	51
5.4.4 LCTEST 指令系统	52
5.4.5 WVTest 指令系统	53
5.4.6 TRIGGER 指令系统	55
5.4.7 SYSTEM 指令系统	55
6.5 出错信息	57
第七章 分选接口使用说明	58
7 1 HANDIFR	58
7.9 HANDI FR 接口板跳线设置	50
7.3 HANDLER 按口依起线改量。 7.3 HANDLER 按口信是图示	57 60
1.3 IRIVLER 按口旧 9 图小	50
第八章 成套 及保修····································	<u>52</u>
8.1 成套	62
8.2 保修	62

第一章 概述

感谢购买和使用我公司产品,在使用本仪器前请首先根据产品装箱单或参考说明书最后 一章"成套和保修"的事项进行确认,若有不符之处请尽快与我公司联系,以维护您的权益。

1.1 引言

TH2689 电容漏电流/绝缘电阻测试仪,是一部全功能自动化测试的元件参数测量分析仪器。采用大屏幕液晶屏显示,直观明了,操作菜单化,快捷方便,同时仪器所提供的 HANDLER 接口、RS232C 及 IEEE488 接口(选件)为仪器使用于自动分选系统和计算机远程操作提供了条件。

仪器的基本规格摘要:(详见第四章)

- 测量参数: 漏电流测试: L.C. (Leakage Current), I.R. (Isolated Resistance) 耐电压测试: Tr, Vt
- 基本精度: L.C. -----± (0.3%+0.05uA)
 ● 测量范围:
- L.C. -----0.000 uA \sim 20.00 mA
- 测试电压/充电电流:
 测试电压 LEV = 1.0V ~ 100V, 分辨率为 0.1V
 = 101V ~ 800V, 分辨率为 1V; ± (0.5%+0.2V) [TH2689]
 = 101V ~ 500V, 分辨率为 1V; ± (0.5%+0.2V) [TH2689A]
 充电电流 LEV ≤ 100V: 0.5 mA ~ 500 mA, 分辨率为 0.5 mA
 > 100V: 0.5 mA ~ IMAX, 分辨率为 0.5 mA; ± (3%+0.05mA)
- 零点校正 : Null
- IEEE-488 接口(选件): 该通用接口为仪器与计算机和其他测量仪器共同组成自动测试系统提供了方便。
 RS-232C和 IEEE-488 接口命令使用国际惯用的可程控仪器标准命令(SCPI)格式编写,极大地方便了用户的后续扩展编程。
- HANDLER 接口:通过该接口可使仪器与自动测试系统的机械处理设备相同步并将结果输 出至机械处理设备。

1.2 使用条件

1.2.1 电源 🗡

电源电压: 220V(1±10%) 电源频率: 50Hz/60Hz(1±5%) 功耗: <120VA

1.2.2 环境温度与湿度

正常工作温度: 0℃~40℃, 湿度: < 90%RH 参比工作温度: 20℃±8℃, 湿度: < 80%RH 运输环境温度: 0℃~55℃, 湿度: ≤ 93%RH

1.2.3 预热

开机后预热时间: ≥ 20 分钟

1.2.4 几点注意问题 🛆

(1) 请不要在多尘、震动、日光直射、有腐蚀气体等不良环境下使用。

(2) 仪器长期不使用,请将其放在原始包装箱或相似箱子中储存在温度为 5℃~40℃, 相对湿度不大于 85%RH 的通风室内,空气中不应含有腐蚀测量仪的有害杂质,且应避免日光 直射。

(3) 本仪器已经经过仔细设计以减少因 AC 电源端输入带来的杂波干扰,然而仍应尽量 使其在低杂讯的环境下使用,如果无法避免,请安装电源滤波器。

(4) 本仪器后有散热风扇,左右有散热通风孔,以避免内部温度升高影响精度,请确保 仪器处于良好通风状态下。

(5) 请勿频繁开关仪器,以免造成存储数据的丢失。

(6) 正确的测试方法:

针对仪器所有测试功能,严禁在仪器输出高压(>50V)时将电容直接连接到仪器上进行 测试。若由于用户违归操作导致仪器损坏,将由用户承担相关维修费用。

1.3 体积与重量

体积(W*H*D): 350mm*120mm*400mm 重量: 约7kg

1.4 安全要求

本仪器为I类安全仪器

1.4.1 绝缘电阻

在参比工作条件下,电源端子与外壳之间的绝缘电阻不小于 50MΩ; 在湿热运输条件下,电源端子与外壳之间的绝缘电阻不小于 2MΩ;

1.4.2 绝缘强度

在参比工作条件下,电源端子与外壳之间能承受额定电压为 1.5kV,频率为 50Hz 的交流 电压 1 分钟,无击穿及飞弧现象。

1.4.3 泄漏电流

泄漏电流不大于 3.5mA。

1.5 电磁兼容性

电源瞬态敏感度按 GB6833.4 的要求。 传导敏感度按 GB6833.6 的要求。 辐射干扰按 GB6833.10 的要求。

第二章 面板说明

2.1 前面板说明

图 2-1 仪器前面板示意图

前面板的说明如下表所示。

表 2-1 仪器前面板说明

序号	名称	简要说明
1 幸七丑刑日		TH2689 或 TH2689A
1	间你及至与	Capacitor Leakage Current/IR Meter
	电源开关(POWER)	接通或切断仪器 220V/110V 电源
2		处于按下位置时,接通电源;
	~	处于弹出位置时,切断电源。
2 1 CD 读目目:	ICD 演员目子屋茛	240*64 点阵液晶显示器,显示所有的测量参
ა	LUD 被钼亚小开希	数,状态,测量结果,等等。
		这五个键的功能是"软的",即它们的功能不
4	软键(SOFTKEYs)	是固定的,在不同的菜单有着不同的功能,
		而它们的当前功能被相应地显示在液晶显示
		屏下面的"软键"显示区域。
5	DISPLAY主菜单按键	用于进入先前的测量功能页面。
6	MAIN 主菜单按键	用于进入主功能选择页面。

序号	名称	简要说明
7	SYSTEM 主菜单按键	用于进入系统设置页面。
		用于控制光标(即反白条)在液晶显示器上
8	方向键(CURSOR)	的移动,被选中的控制参数在液晶显示器上
		呈反白显示。
9	测试端(UNKNOW)	INPUT: 电流采样端。
10	由正給山邊	HV (-):负电压输出端; ✔
10	电压制击师	HV (+): 电压正端;
11	· 按	可以与被测器件之屏蔽层连接,以隔离外界
11	按地缅	电磁干扰,提高测量的精度和稳定性。
19	触发键	触发仪器开始测量,当仪器被设定为手动触
12	(CHARGE/TEST)	发状态时,按此键,可以触发一次仪器测量。
13	回车键 (ENTER)	确认输入的数字等。
14	退格键(BACKSPACE)	用于删除误输入的数字或字母。
15	高压警示灯 (HV)	信号输出时点亮(停止输出熄灭)。颜色:红
16	分选指示灯 (PASS)	分选通过时点亮(不通过时熄灭)。颜色:绿
17	分选指示灯 (FAIL)	分选不通过时点亮(通过时熄灭)。颜色:红

2.2 后面板说明

图 2-2 仪器后面板示意图

后面板说明如下表所示:

表 2−2 仪器后面板说明			
序号	名称	简要说明	
		提供仪器与外部设备的通用串行通讯接口,所	
1	RS232C 串行接口	有参数设置,命令等均可由计算机设定和获得,	
		以实现远程对仪器进行控制。	
2	IFFF488 口(迭件)	提供仪器与外部设备的通用并行通讯接口,功	
2	ILLEGO H (LETT)	能同 1	
		注:此功能应用于与本公司同步直流电源	
	两组电压输出端	TH2689X 的联机	
3		一组电源用于测试,另一组电源可用于同步直	
		流电源输入信号(1、2 脚为负电源输出;4、5	
		脚为 GND 输出)	
4	HANDLER 🗆	仪器通过该接口输出比较结果等,同时通过分	
4		选接口获得"启动"信号。	
5	铭牌	记录生产日期、型号、批号、生产厂家等等。	
6	三线电源插座✔	用于选择并连接 220V/50Hz 或 110V/60Hz 交流	
		电源。上面的拨动开关用于两种电源的选择。	
7	· 中子 11- 24-	可以与被测器件之屏蔽层连接,以隔离外界电	
7	接地端	磁干扰,提高测量的精度和稳定性。	

表 2-2 仪器后面板说明

第三章 使用说明

3.1 待测物 (DUT) 的连接

图 3-1 被测件连接图

注意点:

仪器的 INPUT 端连接被测件的<u>正端</u>, HV(-)端输出负电压,连接被测件的<u>负端</u>。

3.2 操作详解

3.2.1 主功能选择页面(MAIN INDEX)

MAIN 按下仪器面板上的 菜单按键,进入<MAIN INDEX>页面,使用方向键移动光 OK ESC 软键可以进入光标对应的子功能页面,按 软键可以直接返回先前 标,按 的测试页面。 如图 3-2 所示: FILE 文件存储页面; : Calibration: 仪器校准页面,不对用户开放。 <MAIN INDEX> SEQ. TEST (6) COMPARE (1)STEP TEST (2)(7)FILE (3)CONT TEST (8) Calibration (4) NULL (5)W.V. TEST ESC OK 图 3-2 主功能选择页面 页面 注释 说明 SEQ. TEST 循序自动测试页面 触发后自动完成充电、测试、放电过程 STEP TEST 单步手动测试页面 触发进入充电状态,充电完成后再次触 发进入测试状态,需要手动放电 CONT TEST 连续自动测试页面 触发后充电,进入测试状态,一旦外部 有不带电的电容连接在测试端,则自动 触发充电、测试,需要手动放电 NULL 归零测试页面 W.V. TEST 铝箔耐压测试页面 COMPARE 比较功能设置页面 FILE 文件存储页面 Calibration 仪器校准页面 不对用户开放

3.2.2 循序自动测试页面(SEQ. TEST)

在此功能页面下,当测试锁定功能打开时,只需按 CHARGE/TEST 键,仪器自动完成充电、测试、放电过程;若测试锁定功能关闭,则仪器将停留在测试过程连续测试,除非按 DISCHARGE 键,否则不退出测试。

TH2689/89A 使用说明书

3.2.2.1 <SEQ. TEST>页面

在<MAIN INDEX>页面中,用方向键将光标移动到"(1) SEQ. TEST"处,再按 软键则会进入<SEQ. TEST>页面, <SEQ. TEST>共分二页,如下图 3-3 所示:

※注意:

(1) 在执行充电(CHARGE)状态时不能设置参数,在执行测量(TEST)状态时只能设置 量程参数(RANG)和测量速度参数(SPEED)。

(2) 在执行充电(CHARGE)和测量(TEST)状态时,随时按 DISCHARGE 键都可以 退回放电状态。

(3)在 TRIG 模式设置为 BUS、EXT 时,测量动作触发信号由外部介面控制,按键 CHARGE/TEST

______无效。

9

TH2689/89A 使用说明书

3.2.2.2 显示资料说明

如图 3-3(a)所示:

1	页面名称
2	测试功能参数(LC/IR)和测试结果
3	比较结果: 合格 (√PASS), 高 (×HIGH), 低 (×LOW); 若比较功能关闭, 则不显示
4	电压监视
5	当前过程
6	软键区域
7	测试参数设定

3.2.2.3 设定测试参数说明

(1)测试电压(LEV),范围1V~800V(TH2689)/1V~500V(TH2689A)

LEV: 100.0V	<seq. test=""></seq.>
CC: 15.0mA	IR: 21.85G $\Omega \swarrow$
RANG: 2uA	Λ Vm = 0.0V
NEXT 1/3	CHARGE TEST DISCHARGE $\downarrow() \downarrow(-) \uparrow(+) \uparrow(++)$

图 3-4 测试电压设定

将光标移动到"LEV: 100.0V"处,按下表操作:

↑ (++)	粗调,由小到大: 6.3→10.0→16.0→25.0→35.0→50.0
└────	$\rightarrow 63.0 \rightarrow 100.0 \rightarrow 160.0 \rightarrow 200.0 \rightarrow 250.0 \rightarrow 350.0 \rightarrow 400.0 \rightarrow 100.0 \rightarrow 100$
	$450.0 \rightarrow 500.0 (\rightarrow 550.0 \rightarrow 600.0 \rightarrow 630.0 \rightarrow 800.0)$
↓()	粗调,由大到小: 6.3←10.0←16.0←25.0←35.0←50.0
└────	←63.0←100.0←160.0←200.0←250.0←350.0←400.0←
	450.0←500.0 (←550.0←600.0←630.0←800.0)
↑(+)	细调,当 LEV ≥ 100.0V 时,步进为+1V;
¥ 软键	当 LEV < 100.0V 时,步进为+0.1V
↓(-)	细调,当LEV ≥ 100.0V时,步进为-1V;
¥ 软键	当 LEV < 100.0V 时,步进为-0.1V
数字键	直接输入测试电压值(默认单位 V),按 ENTER 确认

(2) 充电电流 (CC), 范围 0.5mA~500mA

LEV: 10	00. OV	<seq. test=""></seq.>
CC: 19	5. OmA	IR: 21.85G $\Omega \swarrow$
RANG:	2uA ,	Vm = 0.0V
NEXT	1/3	CHARGE TEST DISCHARGE $\downarrow() \downarrow(-) \uparrow(+) \uparrow(++)$
		图 3-5 充电电流设定

※注意:

当测试电压 LEV ≤ 100V 时,最大充电电流 *Imax = 500mA*; 当测试电压 LEV > 100V 时,最大充电电流受功率限制,由公式 P=UI 得

 $Imax = P / LEV \quad --- (P = 50W)$

将光标移动到"CC: 15.0mA"处,按下表操作:

↑(++) +4,544	粗调。当CC ≥ 100.0mA 时,步进为+50.0mA;
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	当 CC < 100.0mA 时,步进为+5.0mA;
↓()	粗调。当CC > 100.0mA时,步进为-50.0mA;
└────	当 CC ≤ 100.0mA 时,步进为-5.0mA;
(+)	细调。步进为+0.5 mA;
↓(-) \$	细调。步进为-0.5 mA;
数字键	直接输入充电电流值(默认单位 mA),按 ENTER 确认

(3) 量程档位(RANG),小字符 A 表示 AUTO, H 表示 HOLD

LEV:	100. OV	<seq. test=""></seq.>
CC:	15. OmA	IR: 21.85G $\Omega \swarrow$
RANG:	2uA A	Vm = 0.0V
NEXT	1/3	CHARGE TEST DISCHARGE AUTO HOLD ↓ (-) ↑ (+)
		图 3-6 量程档位设定

将光标移动到"RANG: 2uA A"处,按下表操作:

AUTO 软键	自动量程档位,仪器在当前量程旁显示'A'
HOLD 软键	锁定量程档位,仪器在当前量程旁显示'H'
(+)	选择量程档位, 2uA→20uA→200uA→2mA→20mA
↓(-) 软键	选择量程档位, 20mA→2mA→200uA→20uA→2uA

(4) 测试速度(SPEED)

SPEED:	FAST	<seq. test=""></seq.>
CHG T:	30S	IR: 21.85G $\Omega \swarrow$
D T:	0.2S	Vm = 0.0V
NEXT	2/3	CHARGE TEST DISCHARGE SLOW MED FAST

图 3-7 测试速度设定

将光标移动到"SPEED: FAST"处,按下表操作:

FAST 软键	快速
MED 软键	中速
SLOW 软键	慢速

说明:速度越慢,测量结果越稳定。

(5) 充电时间 (CHG T), 范围 0Sec~999Sec

SPEED:	FAST	<seq. test=""></seq.>
CHG T:	30S	IR: 21.85G $\Omega \swarrow$
D T:	0.2S	Vm = 0.0V
NEXT	2/3	CHARGE TEST DISCHARGE $\downarrow() \downarrow(-) \uparrow(+) \uparrow(++)$
		图 3-8 充电时间设定

将光标移动到"CHG T: 30S"处,按下表操作:

↑ (++)	粗调。当CHGT ≥ 100Sec 时,步进为+100Sec;
└──── \$\\$	当 CHG T < 100Sec 时,步进为+10Sec;
↓()	粗调。当CHGT > 100Sec 时,步进为-100Sec;
└────	当 CHG T ≤ 100Sec 时,步进为-10Sec;
(+)	细调。步进为+1 Sec;
小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	
↓(-) \$\\$	细调。步进为-1Sec;
数字键	直接输入充电时间(默认单位 Sec),按 ENTER 确认

TH2689/89A 使用说明书

第四章 测试性能

(6)延迟测试时间(DT),范围0.2Sec~999.0Sec,此时间是指充电完成和开始测量之间所加的稳定时间。

SPEED:	FAST	<seq. test=""></seq.>
CHG T:	30S	IR: 21.85G $\Omega \swarrow$
D T:	0.2S	Vm = 0.0V
NEXT	2/3	CHARGE TEST DISCHARGE $\downarrow() \downarrow(-) \uparrow(+) \uparrow(++)$
图 3-9 延迟测试时间设定		

将光标移动到"DT: 0.2S"处,按下表操作:

(++) 软键	粗调。当DT ≥ 100Sec 时,步进为+10Sec; 当DT < 100Sec 时,步进为+1Sec;
↓() 软键	粗调。当DT > 100Sec 时,步进为-10Sec; 当DT ≤ 100Sec 时,步进为-1Sec;
↑(+) 软键	细调。步进为+0.1 Sec;
↓(-) 软键	细调。步进为-0.1Sec;
数字键	直接输入延迟测试时间(默认单位 Sec),按 ENTER 确 认

(7)测试锁定(TLOCK),用于切换连续测量模式:

TLOCK:	ON	<seq. test=""></seq.>
SD T:	0. 0S	IR: 21.85G $\Omega \swarrow$
TRIG:	INT	Vm = 0.0V
NEXT	3/3	CHARGE TEST DISCHARGE ON OFF

图 3-10 测试锁定设定

将光标移动到"TLOCK: ON"处,按下表操作

ON	启动测试锁定功能,在该模式下仪器自动完成充电、
软键	测试、放电过程,共完成一次测量。
OFF 软键	关闭测试锁定功能,在该模式下仪器完成充电后,进入测试模式,且保持连续测试,需手动进入放电过程。

TH2689/89A 使用说明书

第四章 测试性能

(8)测试间隔时间(SDT),范围0.0Sec~999.9Sec,此时间是指一次测量完成后等待多长时间开始下一次测量,仅当测试锁定设定为OFF时才有效。

TLOCK:	ON	<seq. test=""></seq.>
SD T: 0.0S		IR: 21.85G $\Omega \swarrow$
TRIG:	INT	$V_{\rm m} = 0.0V$
NEXT	3/3	CHARGE TEST DISCHARGE ON OFF

图 3-11 测试间隔设定

将光标移动到"SDT: 0.0S"处,按下表操作:

(++) 软键	粗调。当 SD T ≥ 100Sec 时,步进为+100Sec;
	当 SD T < 100Sec 时,步进为+10Sec;
↓()	粗调。当 SD T > 100Sec 时,步进为-100Sec;
└────	当 SD T ≤ 100Sec 时,步进为-10Sec;
(+)	细调。步进为+0.1 Sec;
↓(-) 软键	细调。步进为-0.1Sec;
数字键	直接输入延迟测试时间(默认单位 Sec),按 ENTER 确
	认

(9)触发方式(TRIG),与 STEP 模式下的 TRIG 设置相同且保持同步,详细操作见 STEP.TEST 页面详叙。

(10)翻页(NEXT 1/3与NEXT 2/3及NEXT 3/3)

如图 3-10 按 软键或 键,将进入<SEQ. TEST>的第二页(如图 3-3),第 三页翻页操作同上。

3.2.3 单步手动测试页面

3.2.3.1 <STEP TEST>页面

在<MAIN INDEX>页面中,用方向键将光标移动到"(2) STEP TEST"处,再按 软键则会进入<STEP TEST>页面,<STEP TEST>共分二页,如下图 3-11 所示:

LEV: 100.	OV <step test=""></step>
CC: 15.0	ma IR: 21.85G $\Omega \swarrow$ Pass
RANG: 2	$uA_A Vm = 0.0V$
NEXT 1	$\frac{1}{2} \begin{array}{c} \text{CHARGE TEST DISCHARGE} \\ \downarrow () \downarrow (-) \uparrow (+) \uparrow (++) \end{array}$
图	3-13(a) STEP TEST 第一页选项
SPEED: FA	ST <step test=""></step>
TRIG: I	IR: 21.85G $\Omega \swarrow$ Pass
	Vm = 0.0V
NEXT 2	/2 CHARGE TEST DISCHARGE SLOW MED FAST

图 3-13(b) STEP TEST 第二页选项

※注意:

(1) 在执行 CHARGE 状态时不能设置参数,在执行 TEST 状态时只能设置量程参数 RANG 和测量速度 SPEED。

(2) 在执行 CHARGE 和 TEST 状态时,随时按
 (3) 在 TRIG 模式设置为 BUS、EXT 时,测量动作触发信号由外部介面控制,按键
 CHARGE/TEST
 无效。

3.2.3.2 设定参数说明

(1) LEV、CC、RANG、SPEED 参见§3.2.2.3

(2) 触发模式(TRIG)

图 3-14 触发模式设定

将光标移动到"TRIG: INT"处,按下表操作:

INT 软键	内部自动触发
MAN 软键	手动触发
EXT 软键	外部触发

※注意: BUS(总线触发)由总线命令设置

3.2.4 连续自动测试页面

在此功能页面下,按 若外部有不带电的电容连接至测试端,则自动触发一次充电、测试过程,此时 **DISCHARGE** 键仪器退回放电状态。该功能适用于无需放电的连续手工测试状态。

3.2.4.1 <CONT TEST>页面

OK

在<MAIN INDEX>页面中,用方向键将光标移动到"(3) CONT TEST"处,再按 软键则会进入<CONT TEST>页面, <CONT TEST>共分二页,如下图 3-13 所示:

LEV:	100. OV	<cont test=""></cont>
CC:	15. OmA	IR: 21.85G $\Omega \swarrow$
RANG:	2uA A	Vm = 0.0V
NEXT	1/2	CHARGE TEST DISCHARGE $\downarrow() \downarrow(-) \uparrow(+) \uparrow(++)$
	图 3-15	(a) CONT TEST 第一页选项

※注意:

(1) 在执行 CHARGE 状态时不能设置参数,在执行 TEST 状态时只能设置量程参数 RANG 和测量速度 SPEED。

(2) 在执行 CHARGE 和 TEST 状态时,随时按 DISCHARGE 键都可以退回放电状态。

3.2.4.2 设定参数说明

(1) LEV、CC、RANG、SPEED 参见§3.2.2.3

3.2.5 归零测试页面

3.2.5.1 <NULL>页面

在 <main ii<="" th=""><th>NDEX>了</th><th>页面中,</th><th>用方</th><th>万向键将光</th><th>标移动到</th><th>"(4)</th><th>NULL</th><th>"处,</th><th>再按</th><th>OK</th><th> </th></main>	NDEX>了	页面中,	用方	万 向键将光	标移动到	"(4)	NULL	"处,	再按	OK	
键则会进入 <n< td=""><td>ILL>页</td><th>面(如图</th><td>3-1</td><th>14 所示)。</th><td>在处于本</td><td>页面时</td><th>,按【</th><td>CHAR</td><td>RGE/T</td><td>EST</td><td>键将</td></n<>	ILL>页	面(如图	3-1	14 所示)。	在处于本	页面时	,按【	CHAR	RGE/T	EST	键将
后切归苓测试。		100.01									
	LEV:	100.0	V	<null></null>							

CC: 15.0mA	LC: 0.004uA
RANG: 2uA	Vm = 0.0V
OPEN: ON	CHARGE TEST DISCHARGE ON OFF

图 3-16 归零测试页面

TH2689/89A 使用说明书

3.2.5.2 参数设置

- (1) LEV, CC 仅用来显示当前测试参数,不用做更改
- (2) RANG 在执行清零过程中显示动作的量程
- (3) 归零功能启动设置(OPEN)

将光标移动到"OPEN: ON"处,按下表操作:

ON 软键	启动归零功能
OFF 软键	关闭归零功能

3.2.6 铝箔耐压测试页面

▶ 任何在 "W.V. TEST" 过程中不正确取下或加上被测件会由于测试端的高 压造成人身、财物的异常损害!!!

正确的插拔被测件的方法是使仪器先处于放电状态。

3.2.6.1 <W.V. TEST>页面

左/MAIN INDEV~百	五山 田宝向碑收斗	と行移力列"(5)	W V TEST"	_{达 田坨} OK
在 <main index="" 贝<br="">软键则会进入<w.v. td="" tes<=""><th>面中,用刀向键将刀 T>页面(如图 3−1</th><td>」称移动到(5) 6 所示)。</td><td>W.V. IESI 3</td><td>で, 丹按 🚬</td></w.v.></main>	面中,用刀向键将刀 T>页面(如图 3−1	」称移动到(5) 6 所示)。	W.V. IESI 3	で, 丹按 🚬
Vf: 100.0V	KW. V. TEST>	05.0		

CC: 15.0r	Tr: 0.85 S
Td:Tr+ 30	Vm = 0.0V799.9V/030.85S - 2
ChgTd: 50	CHARGE TEST DISCHARGE $ \downarrow() \downarrow(-) \uparrow(+) \uparrow(++) $

图 3-18 W.V. TEST 页选项

3.2.6.2 设定参数与显示参数说明

Vf: 额定皮膜耐压。 CC: W.V 充电定电流。 Tend: Tr+认定耐压时间。 ChgTD: 设定充电上限时间。 Tr: 显示测量电压达到 90% Vf 参数时的上升时间。 Vt: 显示测试时间到达 Td (Tend)时间时,所测量到的电压; 1: 监控输出端的电压值; 2: 显示测试结束时最后测量到的电压和时间; DISCHARGE

3: 过程中要中断测试,只需按 键则随时进入放电状态。

3.2.6.3 参数设置

Vf: 10	0. 0V	W.V. TEST>
CC: 15	. OmA	-1r: 0.85 S $V+\cdot 799 9 V$
Td:Tr+	30S	$V_m = 0.0V799.9V/030.85S$
ChgTd:	50S	CHARGE TEST DISCHARGE \Downarrow () \downarrow (-) \uparrow (+) \uparrow (++)
	冬	3-19 额定皮膜耐压的设置

(1) 额定皮膜耐压 (Vf): 范围 1V~800V (TH2689) / 1V~500V (TH2689A)

将光标移动到"Vf: 100.0V"处,按下表操作:

↑(++)	粗调,由小到大: 6.3→10.0→16.0→25.0→35.0→50.0
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	$\rightarrow 63.0 \rightarrow 100.0 \rightarrow 160.0 \rightarrow 200.0 \rightarrow 250.0 \rightarrow 350.0 \rightarrow 400.0 \rightarrow 100.0 \rightarrow 100$
	$450.0 \rightarrow 500.0 (\rightarrow 550.0 \rightarrow 600.0 \rightarrow 630.0 \rightarrow 800.0)$
↓()	粗调,由大到小: 6.3←10.0←16.0←25.0←35.0←50.0
└────	←63.0←100.0←160.0←200.0←250.0←350.0←400.0←
	450.0←500.0 (←550.0←600.0←630.0←800.0)
↑(+)	细调,步进为+0.1V
↓(-) 软键	细调,步进为-0.1V
数字键	直接输入额定皮膜耐压值,按 ENTER 键确认

19

(2) W.V 充电电流 (CC), 范围 0.5mA~IMAX

※注意:

最大充电电流受功率限制,由公式 P=UI 得

将光标移动到"CC: 15.0mA"处,按下表操作:

(++)	粗调。步进为+5.0mA;
↓() 软键	粗调。步进为-5.0mA;
(+) 款键	细调。步进为+0.5 mA;
↓(-) 软键	细调。步进为-0.5 mA;
数字键	直接输入 W.V 充电电流值,按 ENTER 键确认

(3) W.V 测量时间 (Td), 范围 OSec~600Sec

将光标移动到"Td: Tr+ 30S"处,按下表操作:

(↑(++)) 软键	粗调。当设定值≥100Sec 时,步进为+100Sec; 反之,步进为+10S;
↓() 软键	粗调。当设定值≥100Sec 时,步进为-100Sec; 反之,步进为-10Sec;
(+)	细调。步进为+1Sec;
↓(-) 软键	细调。步进为-1Sec;
数字键	直接输入 W.V 测量时间值,按 ENTER 键确认

(4) W.V 充电时间上限 (ChgTd), 范围 5Sec~600Sec

将光标移动到"ChgTd: 50S"处,按下表操作:

↑(++) 软键	粗调。步进为+30Sec;
↓ ()	粗调。步进为-30Sec;
(+) 软键	细调。步进为+5Sec;
↓(-) 软键	细调。步进为-5Sec;
数字键	直接输入 W.V 充电时间上限值,按 ENTER 键确认

3.2.6.4 <W.V. TEST>测试注意

有些客户在使用过程中,需要将进行耐压测试过程中的器件取下感受其温度,然后再继续夹到测试端进行耐压测试。这种测试方法是不正确的。因为在客户取下器件后,测试端由于处于开路状态将会恒流充电至最大电压,比如 TH2689 会充到 800V,TH2689A 会充到 500V。此时再将被测件夹到测试端,会造成很大的电流冲击,不仅会对被测的器件造成损伤, 仪器也会由于瞬间高压放电而造成损害。

例如 有客户用 TH2689 对 16V 1000uF 的器件进行耐压试验,正常测试时最大只能冲到 22V 左右,客户中途取下后,测试端已瞬间充电至 800V,此时再将电容接到测试端,则仪器对 器件形成高压放电,这会对仪器以及被测件造成损害,甚至对测试人员也是极大的危险。 正确的中断测试方法: 使仪器处于放电状态,才能取下和夹上被测件。

<u>在进行耐压测试过程中要中断测试,只需先按</u> <u>DISCHARGE</u> <u>键则仪器</u> <u>随时进入放电状态,此时方可取下被测件;同时也必须确认仪器处于</u> <u>放电状态下才可以重新夹上被测件,进行另一次测试过程。</u>

3.2.7 比较功能设置页面

3.2.7.1 <COMPARE>页面

在<MAIN INDEX>页面中,用方向键将光标移动到"(6) COMPARE"处,再按

软键则会进入<COMPARE>页面(如图 3-21 所示)。

<compare></compare>			
PARAMETER:	I. R.		
COMPARE :	ON		
UPPER (+):	700. 000G Ω		
LOWER (-):	000. 000K Ω		
		ON	0FF

- 图 3-23 COMPARE 页选项
- 3.2.7.2 参数设置
- (1) PARAMETER:显示当前的比较器参数模式,此处不可修改,若要更改,参见§3.2.9.1。
- (2) 比较器开关(COMPARE)

<compare></compare>					
PARAMETER:	I.R.				
COMPARE :	ON				
UPPER (+):	700.00	00G	Ω		
LOWER (-):	000.00	00K	Ω		
				ON	OFF
-	图 3-2	24	比较器开关设置		

将光标移动到"COMPARE: ON"处,按下表操作:

ON 软键	启动比较器功能
OFF 软键	关闭比较器功能

(3) 比较器上极限(UPPER)

<compare></compare>		
PARAMETER: I.R.		
COMPARE : ON		
UPPER (+): 700.000G Ω		
LOWER (-): 000.000K Ω		
	ON	OFF

图 3-25 比较器上极限

ON 软键	启动比较器上极限比较功能
OFF 软键	关闭比较器上极限比较功能
数字键	直接输入比较器上极限值

(4) 比较器下极限(LOWER) 参见比较器上极限设置。

3.2.8 文件存储页面

3.2.8.1 <FILE>页面

OK 在<MAIN INDEX>页面中,用方向键将光标移动到"(7) FILE"处,再按 软 键则会进入<FILE>页面(如图 3-24 所示)。

LOAD 软键	调用文件
SAVE 软键	保存文件
REN 软键	重命名文件
DEL 软键	删除文件

3.2.8.2 文件存储操作

- (1) 可以保存 0~9号文件, 10号文件为仪器系统默认文件, 用于恢复初始状态。
- (2)"-----"表示没有对应的文件存储
- (3) 存储文件流程

拵

图 3-28 正在进行保存

3.2.9 系统配置页面

按下仪器面板上的 菜单按键,进入系统配置页面<SYSTEM CONFIG>,该页 面共有3页,如图 3-28 所示:

PARAMETER KEY LOCK CHG TIME RNG DWELL AVERACE	<system 1="" 4="" config=""> L.C.</system>
BEEP SET BEEP MODE	I.R. L.C.
图 3-30	(a)SYSTEM CONFIG 第一页选项

HDL SET	<system 2="" 4="" config=""></system>
HDL MODE	
TRIGDELAY	017
TRIG EDGE	ON
BUS MODE	
GPIB ADDR	
BAUD RATE	ON OFF

图 3-30 (b) SYSTEM CONFIG 第二页选项

EOS CODE	<system 3="" 4="" config=""></system>
LINE FREQ	
EXTV DISP	0.477
PASS WORD	OAH
CONTRAST	
KEY BEEP	
SH LEVEL	ODH+OAH ODH OAH
图 3-28	(c) SYSTEM CONFIG 第三页选项
SH TIME	<system 4="" config=""></system>
SH OUTPUT	

3.2.9.1 系统参数设置

(1) 测量参数 (PARAMETER), 出厂预设 L.C.

PARAMETER KEY LOCK	<system 1="" 4="" config=""></system>
CHG TIME RNG DWELL	L. C.
AVERAGE BEEP SET	
BEEP MODE	I.R. L.C.

图 3-31 测量参数设置

将光标移动到"PARAMETER"处,按下表操作:

I.R. 软键	测量参数设为绝缘电阻(I.R.)
L.C. 软键	测量参数设为漏电流(L.C.)

(2) 键锁(KEY LOCK), 开机预设OFF

	~		
PARAMETER	<system config<="" td=""><td>1/4></td><td></td></system>	1/4>	
KEY LOCK			
CHG TIME	011		
RNG DWELL	ON		
AVERAGE			
BEEP SET			
BEEP MODE		ON	OFF

图 3-32 键锁设置

将光标移动到"KEY LOCK"处,按下表操作:

ON 软键	启动键锁,当页面切换到测量功能页面时,原软键区 域将出现"KeyLock"字样,表示按键被锁住。若要解 除此功能,需要输入仪器密码(PASS WORD),参见 本节关于第三页选项中 PASS WORD 的说明
OFF 软键	关闭键锁

(3) 充电时间计数模式 (CHG TIME), 出厂预设 Vm=Vs

PARAMETER KEY LOCK	<system 1="" 4="" config=""></system>	
CHG TIME RNG DWELL	Vm = Vs	
AVERAGE BEEP SET		
BEEP MODE	Vm=OV	Vm=Vs

图 3-33 充电时间计数模式设置

将光标移动到"CHG TIME"处,按下表操作:

Vm=Vs 软键	从 Vm=Vs 时起开始计算充电时间
Vm=0V	从 Vm=0V 时开始计算充电时间,即测试开始,立即计
软键	算充电时间

※根据 JIS(Japanese Industrial Standards,日本工业标准)的规范内所提到,待测物充电至额定工作电压后,开始计算充电时间。所以为符合 JIS 的规范,请选择 Vm=Vs 选项。

(4) 切换量程间隔时间(RNG DWELL),范围 0.0Sec~9.9Sec,出厂预设为 0.0Sec

PARAMETER	<system 1="" 4="" config=""></system>	
KEY LOCK		
CHG TIME	0.00	
RNG DWELL	0. 0S	
AVERAGE		
BEEP SET		
BEEP MODE	↓ (-)	† (+)
मि		

图 3-34 切换量程间隔时间设置

将光标移动到"RNG DWELL"处,按下表操作:

14/014 12 /424	
(+) 软键	+0.1Sec
↓(-) 软键	-0.1Sec
数字键	直接输入切换量程间隔时间,默认单位 Sec

(5)测量平均次数(AVERAGE),范围1~8,出厂预设为1。

PARAMETER KEY LOCK	<system 1="" 4="" config=""></system>	
CHG TIME RNG DWELL	1	
AVERAGE	-	
BEEP SET		
BEEP MODE	↓ (-)	† (+)

图 3-35 测量平均次数的设置

将光标移动到"AVERAGE"处,按下表操作:

(+) 软键	+1
↓(-) 软键	-1
数字键	直接输入测量平均次数

(6) 警告声设置 (BEEP SET), 出厂预设 ON

PARAMETER KEY LOCK	<system 1="" 4<="" config="" th=""><th>></th><th></th></system>	>	
CHG TIME RNG DWELL AVERAGE	ON		
BEEP SET BEEP MODE		ON	OFF

图 3-36 警告声设置

TH2689/89A 使用说明书

将光标移动到"BEEP SET"处,按下表操作:

ON 软键	有声
OFF 软键	静音

(7) 警告声动作设置(BEEP MODE),出厂预设为 FAIL

PARAMETER	<system 1="" 4="" config=""></system>	*	
KEY LOCK			
CHG TIME			
RNG DWELL	FAIL		
AVERAGE			
BEEP SET			
BEEP MODE		PASS	FAIL

图 3-37 警告声动作设置

将光标移动到"BEEP MODE"处,按下表操作:

PASS 软键	仪器进行 COMPARE 测量时,判定结果为合格品时,发出警告声	
FAIL 软键	仪器进行 COMPARE 测量时, 判定结果为不合格品时, 发出警告声	
L 建	翻至 SYSTEM CONFIG 第二页选项设置	

(8) HANDLE 接口设置(HDL SET), 预设为 ON

HDL SET	<system 2="" 4<="" config="" th=""><th>></th><th></th></system>	>	
HDL MODE			
TRIGDELAY	017		
TRIG EDGE	ON		
BUS MODE			
GPIB ADDR			
BAUD RATE		ON	OFF

图 3-38 HANDLER 接口设置

将光标移动到"HDL SET"处,按下表操作:

ON 软键	允许 HANDLER 接口工作
OFF 软键	禁止 HANDLER 接口工作
() 健	翻回 SYSTEM CONFIG 第一页选项设置

(9) HANDLER 接口处理模式 (HDL MODE), 出厂预设为 CLEAR

HDL SET	<system 2="" 4="" config=""></system>	
HDL MODE		
TRIGDELAY		
TRIG EDGE	CLEAR	
BUS MODE		
GPIB ADDR		
BAUD RATE	HOLD	CLEAR

图 3-39 HANDLER 接口处理模式

将光标移动到"HDL MODE"处,按下表操作:

CLEAR 软键	CLEAR 模式,使用 HANDLER 接口时,每次测量前, 会先将上一次测量结果的输出信号(PASS 或 FAIL)清 除
HOLD 软键	HOLD 模式,使用 HANDLER 接口时,测量结果的输出信号 (PASS 或 FAIL) 会维持到下次测试结果不同时才改变

(10) 外部触发延时 (TRIGDELAY), 范围 0~9999mSec, 出厂预设为 0mSec

HDL SET HDL MODE TRIGDELAY TRIG EDGE BUS MODE GPIB ADDR BAUD RATE	<system 2="" 4="" config=""></system>
DAUD KAIL	

图 3-40 外部触发延时设置

将光标移动到"TRIGDELAY"处,按下表操作:

数字键	直接输入延迟时间,默认单位 mSec	
	用来调整仪器收到外部触发信号时,	要延迟多久才进
	行测量	

(11) 外部触发边沿(TRIG EDGE),出厂预设 FALLING

HDL SET	<system 2="" 4="" config=""></system>
HDL MODE	
TRIGDELAY	
TRIG EDGE	FALLING
BUS MODE	
GPIB ADDR	
BAUD RATE	RISE FALL

图 3-41 外部触发边沿设置

TH2689/89A 使用说明书

\$ 软键

 将光标移动到"TRIG EDGE"处,按下表操作:

 FALL
 下降沿触发(FALLING)

 软键
 上升沿触发(RISING)

(12) 总线模式 (BUS MODE), 出厂预设为 RS232

	· · · · · · ·			
HDL SET	<syste< th=""><th>EM CONFIG 2/4</th><th>></th><th></th></syste<>	EM CONFIG 2/4	>	
HDL MODE				
TRIGDELAY		DGGG	~	
TRIG EDGE		RS23	2	
BUS MODE			_	
GPIB ADDR				
BAUD RATE		GPIB	RS232	0FF
	- 夕 り り	当建造十九里		

图 3-42 总线模式设置

将光标移动到"BUS MODE"处,按下表操作:

GPIB 软键	使用 GPIB 接口
RS232 软键	使用 RS232 接口
OFF 软键	不使用总线控制

(13) GPIB 地址 (GPIB ADDR),范围 00~30,出厂预设为 08

HDL SET	<system 2="" 4="" config=""></system>
HDL MODE	
TRIGDELAY	00
TRIG EDGE	08
BUS MODE	
GPIB ADDR	
BAUD RATE	↓ (-) † (+)

图 3-43 GPIB 地址设置

将光标移动到"GPIB ADDR"处,按下表操作:

(+) 软键	+1
↓(-) 软键	-1
数字键	直接输入 GPIB 地址

(14) 波特率 (BAUD RATE),共有 6 种速率选择,出厂预设为 19200

 HDL SET HDL MODE TRIGDELAY TRIG EDGE BUS MODE GPIB ADDR BAUD RATE
 <SYSTEM CONFIG 2/4>

 19200
 19200

 BUS MODE GPIB ADDR BAUD RATE
 600 1200 4800 9600 NEXT

 图 3-44 (a) 波特率设置

HDL SET HDL MODE	<system< th=""><th>CONFIG 2/4</th><th>4></th><th></th></system<>	CONFIG 2/4	4>	
TRIGDELAY TRIG EDGE		1920	0	
BUS MODE		1020	•	
GPIB ADDR				
BAUD RATE		19200	28800	NEXT
		シートリート シート・シート 日本		

图 3-44 (b) 波特率设置

将光标移动到"BAUD RATE"处,按下表操作:

NEXT 软键	如图 3-42 中软键区域切换			
600	选择 600, 1200, 4800, 9600, 19200, 28800 波特率			
28800 软键				
〕 健	翻至 SYSTEM CONFIG 第三页选项			

(15) 返回资料结束码(EOS CODE),出厂预设为ASCII码 0AH

EOS CODE	<system 3="" 4="" config=""></system>	
LINE FREQ		
EXTV DISP	0.1.17	
PASS WORD	OAH	
CONTRAST		
KEY BEEP		
SH LEVEL	ODH+OAH	ODH OAH
न्त		

图 3-45 返回资料结束码设置

TH2689/89A 使用说明书

将光标移动到"EOS CODE"处,按下表操作:				
OAH 软键	返回资料选择以 0AH 结束			
ODH 软键	返回资料选择以 0DH 结束			
ODH+0AH 软键	返回资料选择以 0DH0AH 结束			
健	翻回 SYSTEM CONFIG 第二页选项			

(16) 电源频率设置 (LINE FREQ), 出厂预设为 50Hz

, and a second s		
EOS CODE	<system 3="" 4="" config=""></system>	
LINE FREQ		
EXTV DISP		
PASS WORD	50Hz	
CONTRAST		
KEY BEEP		
SH LEVEL	50Hz 60H	z

将光标移动到"LINE FREQ"处,按下表操作:

50Hz 软键	电源频率为 50Hz
60Hz 软键	电源频率为 60Hz

(17) EXTV DISP, 出厂预设为 OFF

EOS CODE LINE FREQ	<system 3="" 4="" config=""></system>
EXTV DISP PASS WORD	OFF
CONTRAST KEY BEEP	
	ON OFF

图 3-47 EXTV DISP

将光标移动到"EXTV DISP"处,按下表操作:

ON 软键	等待外部触发信号时,测量的电压立即显示
OFF 软键	等待外部触发信号时,测量的电压不显示

图 3-46 电源频率设置

图 3-51 确认密码

(19) 液晶对比	2度(CONTRAST),	范围 0~31,出厂预设为 15
	EOS CODE	<system 3="" 4="" config=""></system>
	LINE FREQ	
	EXTV DISP	
	PASS WORD	15
	CONTRAST	10
	KEY BEEP	
	SH LEVEL	↓ (-) † (+)

图 3-52 液晶对比度设置

将光标移动到"CONTRAST"处,按下表操作:

(+) 软键	+1
↓(-) 软键	-1

(20) 按键音 (KEY BEEP), 出厂预设为 ON

EOS CODE LINE FREQ	<syste< th=""><th>M CONFIG 3/4></th><th></th><th></th></syste<>	M CONFIG 3/4>		
EXTV DISP		ON		
CONTRAST		UN		
KEY BEEP				
SH LEVEL			ON	OFF
	図 2_52	拉键立识罢		

图 3-53 按键音设置

将光标移动到"KEY BEEP"处,按下表操作:

ON 软键	按键时有声
OFF 软键	按键时无声

(21) 短路电压 (SH LEVEL), 出厂预设为 0.05V, 范围 0.01~TestV×10%V

EOS CODE LINE FREQ	<syste< th=""><th>CM CONFIG 3/4</th><th>></th><th></th></syste<>	CM CONFIG 3/4	>	
EXTV DISP				
PASS WORD		0.0	5V	
CONTRAST				
KEY BEEP				
SH LEVEL		Default	PER	ABS

图 3-54 短路电压设置

TH2689/89A 使用说明书

将光标移动到"SH	LEVEL"处,按下表操作:
ABS 软键	以绝对值的形式输入
PER 软键	以百分比的形式输入
Default 软键	0.05V
数字键	直接输入短路电压,默认单位 V。用来调整仪器输出端 电压低于多少进入短路判断,若小于设定值且保持到 设定的时长,将进入短路保护状态

(22) 短路保护时间 (SH TIME), 出厂预设为 10.0S, 范围 0.1~999.9S

SH TIME SH OUTPUT	<syste)< th=""><th>M CON</th><th>FIG 4/4</th><th>اک مح</th><th></th></syste)<>	M CON	FIG 4/4	اک مح	
	Default	2.0	1.0	0.5	0. 1
5	रा २ हह अन्त	财相拍	中间元星	1	

图 3-55 短路保护时间设置

将光标移动到"SH TIME"处,按下表操作:

0.1 软键	0.1S
0.5 软键	0.58
1.0 软键	1.0S
2.0 软键	2.08
Default 软键	10.0S
数字键	直接输入短路保护时间,默认单位 S。用来调整仪器输 出端电压低于多少进入短路判断后,若小于设定值且 保持到设定的时长,将进入短路保护状态

(23) 短路输出 (SH OUTPUT)

SH SH (TIME OUTPUT	<syst.< th=""><th>EM CO</th><th>ONFIG 4</th><th>/4></th><th></th></syst.<>	EM CO	ONFIG 4	/4>	
			H	IAND	LER	
			ALL	Rs232	Handler	OFF
		图 3-56	短路	输出设置	L	

TH2689/89A 使用说明书

将光标移动到	"SH OUTPUT"处,按下表操作:
OFF 软键	OFF,短路时不输出任何信号
Handler 软键	Handler,短路时在 HANDLER 口输出 FAIL 信号
Rs232 软键	Rs232, 短路时在 Rs232 口将接收到"Shorting!!!"字符串
ALL 软键	ALL,短路时 HANDLER 及 Rs232 将分别收到信号
数字键	直接输入短路保护时间,默认单位 S。用来调整仪器输 出端电压低于多少进入短路判断后,若小于设定值且 保持到设定的时长,将进入短路保护状态

第四章 测试性能

4.1 漏电流/绝缘电阻测试(L.C./I.R. TEST)

4.1.1 测量参数

漏电流测试: L.C. (Leakage Current), I.R. (Isolated Resistance)

4.1.2 测量信号

4.1.3 测量基本精度

L. C. -----± (0. 3%+0. 05uA)

4.1.4 显示范围

L. C. -----0. 000uA \sim 20. 00 mA I. R. ----0. 01k $\Omega \sim$ 99. 99G Ω

4.1.5 测量时间

参数	快速	中速	慢速
漏电流 L.C.	40mSec	60mSec	120mSec
绝缘电阻 I.R.	40mSec	60mSec	120mSec

※测量条件为量程锁定。

4.1.6 归零 (NULL)

去除整个回路上的漏电流。

4.2 耐电压测量(W.V. TEST)

4.2.1 测量参数

上升时间 Tr	单位:	Sec
皮膜耐电压 Vt	单位:	V

4.2.2 测量信号

充电电流 0.5 mA ~ 80 mA; (TH2689) 0.5 mA ~ 130 mA; (TH2689A) step 0.5mA

4.2.3 显示范围

Tr ----- 110mSec~600Sec Vt ----- 1.0V~VMAX VMAX = 800V (TH2689) = 500V (TH2689A)

第五章 远程控制

本仪器可使用 RS232C 串行接口(标配)或 GPIB 并行接口(选件)进行数据通讯和无仪 器面板的远程控制,但二者不可同时使用;它们具有相同的程控命令,但使用不同的硬件配 置和通讯协议。本章介绍接口的使用方法,接口命令的使用详见第七章。

5.1 RS232C 接口说明

仪器提供丰富的程控命令,通过 RS232C 接口,计算机可实行仪器面板上几乎所有功能操作。

5.1.1 RS232C 接口简介

目前广泛采用的串行通讯标准是 RS-232 标准,也可以叫作异步串行通讯标准,用于实现计算机与计算机之间、计算机与外设之间的数据通讯。RS为"Recommended Standard"(推荐标准)的英文缩写,232 是标准号,该标准是美国电子工业协会(EIA)1969年正式公布的标准,它规定每次一位地经一条数据线传送。

大多数串行口的配置通常不是严格基于 RS-232 标准:在每个端口使用 25 芯连接器(IMB AT 使用 9 芯连接器)的。最常用的 RS-232 信号如表所示:

信号	符号	25 芯连接器引脚号	9芯连接器引脚号
请求发送	RTS	4	7
清除发送	CTS	5	8
数据设置准备	DSR	6	6
数据载波探测	DCD	8	1
数据终端准备	DTR	20	4
发送数据	TXD	2	3
接收数据	RXD	3	2
接地	GND	7	5

表 5-1 常用 RS232 串行口引脚定义

同世界上大多数串行口一样,本仪器的串行接口不是严格基于 RS-232 标准的,而是只 提供一个最小的子集。如下表:

衣 J-2 汉裔 KJ-2J2 按口打脚足入				
信号	符号	连接器引脚号		
发送数据	TXD	3		
接收数据	RXD	2		
接地	GND	5		

またるが限りのない技力可能合い

这是使用串行口通讯最简单而又便宜的方法。

①注意:本仪器的串行口引脚定义与标准9芯RS232C的连接器的引脚定义基本相同。

本仪器的 RS232C 连接器使用 9 芯针式 DB 型插座,引脚顺序如下图所示:

图 5-1 RS232 接口引脚图

使用标准的 DB 型 9 芯孔式插头可以与之直接相连。

⚠ 警告:为避免电气冲击,插拔连接器时,应先关掉电源;

⚠ 警告: 请勿随意短接输出端子, 或与机壳短接, 以免损坏器件。

5.1.2 与计算机通讯

■ 仪器与计算机连接如图所示:

图 5-2 仪器与计算机 RS232 接口连接图

由上图可以看到,本仪器的引脚定义与 IMB AT 兼容机使用的9芯连接器串行接口引脚 定义相同。用户可使用双芯屏蔽线按图示自行制做三线连接电缆(长度应小于1.5m)或从同 惠电子有限公司购买到计算机与仪器间的串行接口电缆线或直接购买标准的DB9芯电缆线。

- 自制连接电缆时,注意应在计算机连接器上将4、6脚短接,7、8脚短接。
- 通过串行口与计算机通讯时,应首先设置仪器的总线方式 BUS MODE 为 RS232
- 串行口主要参数

表 5-3 串口主要参数

传输方式	含起始位和停止位的全双工异步通讯
波特率	预设 19200 bps
数据位	8 BIT
停止位	1 BIT
校验	无
结束符	NL(换行符,ASCII 代码 10)
联络方式	软件联络
连接器	DB9 芯

命令串语法及格式在第六章"命令参考"中叙述。

5.2 GPIB 接口说明

5.2.1 GPIB 总线

IEEE488 (GPIB)通用并行总线接口是国际通用的智能仪器总线接口标准。IEEE为电气与电子工程师学会的英文缩写,488为标准号。通过该接口可以与计算机或其它智能化设备连接通讯,可以方便地与其它测试仪器一起组成自动测试系统。在同一总线上可以同时连接多台测试仪器。在本仪器中,仪器采用 IEEE488.2 标准,接口板由用户选购。控制指令系统是开放的,用户可以使用产品提供的计算机操作界面,也可自己根据该控制指令系统编程以达到目的。控制指令系统支持仪器绝大多数功能,也就是说,在控制计算机上可以达到仪器几乎所有功能的操作,以实现仪器的远程控制。

图 5-3 GPIB 接插件/管脚结构图

使用本仪器 GPIB 系统时,应注意以下几点:

- 一个总线系统的电缆总长度不应超过 2 米和连接的测试仪器总数的乘积,并且电缆 总长不超过 20 米。
- 2. 同一总线上最多可同时连接 15 台测试仪器。

3. 电缆怎样连接在一起并无限制,但推荐在任一测试仪器上仅叠加4个背式接插件。 GPIB 电缆连接法之一:

5.2.2 GPIB 接口功能

本仪器提供了除控者外的绝大多数 GPIB 通用功能,参见下表:

代号	功能
SH1	支持全部数据源联络功能
AH1	支持全部受信器联络功能
T6	基本讲功能;串接查询功能;MLA 时讲取消;无 TALK ONLY 功能
L4	基本听功能; MTA 时听取消; 无只听功能
RL1	远控/本地功能
DC1	设备清除功能
DT1	设备触发功能
C0	无控者功能
E1	开集电极驱动

表 5-4 GPIB 通用功能

5.2.3 GPIB 地址

本仪器的 GPIB 以单地址方式寻址,没有副地址,可使用 0-30 作为 GPIB 地址,出厂时 默认地址为 8,地址值可自动被保存在非易失性存储器中,地址的设置详见§3.2.9 中 GPIB ADDR 的介绍。

第六章 命令参考

仪器命令分为两种类型: GPIB 公用命令和 SCPI(可程控仪器标准命令)命令。GPIB 公用 命令由 IEEE488.2-1987 标准定义,这些命令适用于所有仪器装置,但本仪器并不支持全部公 用命令。SCPI 命令是树状结构的。

6.1 公用命令说明

- 1. *RST
- 功 能: 使仪器恢复出厂设置。
- 2. *IDN?
- 功 能: 查询四个栏位的信息(由逗号隔开)。
- 传回值:公司,仪器型号,允许输出最大电压,版本号
 - 例如: TH2689为"TongHui,2689,800, Ver0.1 2008";
 - TH2689A 为"TongHui,2689A, 500, Ver0.1 2008";
- 3. *TRG
- 功 能: 仪器处于总线触发方式 (BUS) 下将被触发。
- 4. *SAV
- 功 能:保存文件
- 参数: <numeric_value>
- 说明: <numeric_value>为 0~9 的文件序号。 例如: *SAV 1
- 注 意:本仪器在覆盖已存在的文件记录时不提示!
- 5. *RCL
- 功 能: 调用已有的文件记录
- 参数: <numeric_value>
- 说明: <numeric_value>为 0~9 的文件序号。 例如: *RCL 1

TH2689/A所有 SCPI 指令可由下表完全窥视。

命令	参数	传回值
ABORt		[无查询]
CALCulate		
: LIMit		
: FORMat	${IR LC}$	{IR LC}
: BEEPer		
: CONDition	{FAIL PASS }	{FAIL PASS }
: STATe	$\{OFF \mid ON \mid 0 \mid 1\}$	$\{0 \mid 1\}$
: CLEar		[无查询]
: FAIL?	[只适用于查询]	$\{0 (PASS) \mid 1 (FAIL) \}$
: STATe	$\{OFF \mid ON \mid 0 \mid 1\}$	$\{0 \mid 1\}$
: UPPer		
[: DATA]	{ <numeric_value> MAX MIN}</numeric_value>	<numeric_value> OFF</numeric_value>
: LOWer		
[: DATA]	{ <numeric_value> MAX MIN}</numeric_value>	<numeric_value> OFF</numeric_value>
: ONOFf	$\{0 \mid 1 \mid 2 \mid 3\}$	{0 1 2 3}
: NULL		
[: IMMediate]		[无查询]
: DATA?	[只适用于查询]	{NR3}, {NR3}, {NR3}, {NR3}, {NR3}, {NR3}, {NR3},
: STATe	{OFF ON 0 1}	{0 1}
DISPlay		
: STATe?	[只适用于查询]	{LCTEST WVTEST NULL MAIN SYSTEM}
: LCTest		[无查询]
: WVTest		[无查询]
LCTest		
: SOURce		
: VOLTage	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: CURRent	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: CONFigure		
: FUNCtion	{SEQ STEP CONT}	{SEQ STEP CONT}
: SPEed	{FAST MEDium SLOW}	{FAST MEDIUM SLOW}
: RANGe	{ <range> MAX MIN}</range>	<range></range>
: AUTO	{OFF ON 0 1}	{0 1}
: CHGTime	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: DWELl	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: MEASure		
: STATe?	[只适用于查询]	{CHG TEST DCHG}
: FETCh?	[只适用于查询]	$\{0 (OK) 1 (ERROR) \},\$
		{NO PASS HIGH LOW }
: IR?	[只适用于查询]	{NK3}
: LC?	[只适用于查询]	{NR3}
: VMON?	[只适用于查询]	{NR3}

表 6-1 SCPI 命令表

命令	参数	传回值
WVTest		
: SOURce		
: VOLTage	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: CURRent	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: CONFigure		
: TEND	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: CHGTEND	{ <numeric_value> MAX MIN }</numeric_value>	<numeric_value></numeric_value>
: MEASure		
: STATe?	[只适用于查询]	{CHG TEST DCHG}
: TRise?	[只适用于查询]	{NR3}
: VTerminate?	[只适用于查询]	{NR3}
: TEnd?	[只适用于查询]	{NR3}
: VEnd?	[只适用于查询]	{NR3}
[: DATA]		
: DATA?	[只适用于查询]	<set1_n>, <set1_t>, <set1_v>;</set1_v></set1_t></set1_n>
		<set2_n>, <set2_t>, <set2_v>;</set2_v></set2_t></set2_n>
		<setn_n>, <setn_t>, <setn_v>;</setn_v></setn_t></setn_n>
: DATA: POINts	<start>, <end></end></start>	<numeric_value></numeric_value>
TRIGger		
[: IMMediate]		[无查询]
: SOURce	{INT MAN EXTernal BUS}	{INT MAN EXT BUS}
: DELay	{ <numeric_value> MAX MIN}</numeric_value>	<numeric_value></numeric_value>
: EDGE	{FALLing RISIng}	{FALL RISI}
SYSTem		
: BEEPer		
[: IMMediate]		[无查询]
: STATe	{OFF ON 0 1}	{0 1}
: LFRequency	{50 60}[HZ]	{50 60}[HZ]
: HANDler	{CLEAR HOLD}	{CLEAR HOLD}
: STATe	$\{OFF \mid ON \mid 0 \mid 1\}$	$\{0 \mid 1\}$
: CONTrast	<numeric_value></numeric_value>	<numeric_value></numeric_value>
: RANGEDwell	{ <numeric_value> MAX MIN}</numeric_value>	<numeric_value></numeric_value>
: AVErage	{ <numeric_value> MAX MIN}</numeric_value>	<numeric_value></numeric_value>
: PRESet		[无查询]
: ERRor?	[只适用于查询]	<numeric_value>, <string></string></numeric_value>

6.2.1 指令结构说明

树状结构的指令最顶端为根命令(root command),或简称根(root)。如果要到达低层的 指令时,必须按照特定的路径才可以到达。

命令结束符:命令输入的结束符,例如 NL (换行符, ASCII 码为 10)。

冒号(:): 冒号是命令的层次, 表示进入命令的下一层。

分号 (;): 分号表示开始多重命令。

问号 (?): 问号表示查询。

逗号(,): 逗号是多重参数的分隔符。 **空格()**: 空格是命令和参数的分隔符。指令注释中用 **, 表示空格 引号('')**: 单引号是被原样引用的内容,命令分析程序不对其做任何加工。 **星号(*)**: 星号后的命令是公用命令。 下图表示了如何通过使用冒号、分号达到低层的指令。

按图 7-1 所示,如果发送命令

: AA: BB: EE; FF; GG

相当于发送了下面三条命令

: AA: BB: EE : AA: BB: FF

: AA: BB: GG

6.3 指令语法

● 公用命令语法

公用命令不具有 SCPI 命令的树状式结构,无论在哪个层级下面都可以直接发送。

- 字母不分大小写
- 结束字符
- 结束字符有三种: [CARRIAGE RETURN] (0Dh)、 [NEW LINE] (0Ah) 和 [CARRIAGE RETURN] (0Dh) +[NEW LINE] (0Ah)。
- _ 表示空格

6.4 SCPI 指令说明

6.4.1 ABORt 指令系统

1. :ABORt

- 功 能: 立即中断处理中的触发系统,系统进入 DISCHARGE 模式。
- 参数:无
- 传回值:无

6.4.2 CALCulate 指令系统

:CALCulate:LIMit:FORMat_{IR | LC} 动 能:设定或查询测量参数,同步设定比较器参数模式。

- 参数:{IR|LC}
- 传回值: {IR | LC}
- 说明:IR 测量参数为电阻值
 - LC 测量参数为电流值

2. :CALCulate:LIMit:BEEPer:STATe_{ OFF | ON | 0 | 1}

- 功 能:设定或查询蜂鸣器是否动作。
- 参数:{OFF|ON|0|1}
- 传回值: {0|1}
- 说明: OFF | 0 关闭蜂鸣器
 - ON|1 启动蜂鸣器

3. :CALCulate:LIMit:BEEPer:CONDition_{FAIL | PASS}

- 功 能:设定或查询蜂鸣器的比较器输出。
- 参数:{FAIL | PASS}
- 传回值: {FAIL | PASS}
- 说明: FAIL 当比较器结果为 FAIL 时发出响声 PASS 当比较器结果为 PASS 时发出响声

4. :CALCulate:LIMit:CLEar

- 功 能:用于清除: CALCulate: LIMit: FAIL? 命令返回的资料
- 参数:无
- 传回值:无查询

5. :CALCulate:LIMit:FAIL?

- 功 能: 传回比较器结果
- 参数:无
- 传回值: {0|1}
- 说 明: 0 比较器结果是 FAIL
- 1 比较器结果是 PASS

6. :CALCulate}:LIMit:STATe_{ OFF | ON | 0 | 1}

- 功 能: 设定或查询是否启动比较器功能
- 参数:{OFF|ON|0|1}

TH2689/89A 使用说明书

传回值: {0|1} 说 明: OFF | 0 关闭比较器功能 ON | 1 启动比较器功能 :CALCulate:LIMit:UPPer[:DATA]_{<numeric_value> | MIN | MAX} 7. 功 能:设定或查询比较器功能参数上限值,格式为<NR3> 参数: {<numeric_value> | MIN | MAX} 传回值: numeric_value | OFF 说 明: OFF 该比较极限被关闭 8. :CALCulate:LIMit:LOWer[:DATA]..{<numeric value> | MIN | MAX} 功 能:设定或查询比较器功能参数下限值,格式为<NR3> 参数: {<numeric_value> | MIN | MAX} 传回值: numeric_value | OFF 说 明: OFF 该比较极限被关闭 9. :CALCulate:LIMit:ONOFf_{0 | 1 | 2 | 3|4|5} 功 能:设定或查询比较器功能选择 参数:{0|1|2|3} 传回值: {0 | 1 | 2 | 3} 说明:0 关闭比较器 1 启动比较器上限功能 2 启动比较器下限功能 3 启动比较器上下限功能 4 关闭比较器上限功能 5 关闭比较器下限功能 10. :CALCulate:NULL[:IMMediate] 功 能:执行各档位(20mA、2mA、200uA、20uA及2uA)开路归零 参数:无 传回值:无 11. :CALCulate:NULL:DATA? 功 能: 查询各档位(20mA、2mA、200uA、20uA及2uA)开路归零值 参数:无 传回值: numeric_value, 12. :CALCulate:NULL:STATe_{ OFF | ON | 0 | 1} 功 能:设定或查询是否启动开路归零功能 参数:{OFF|ON|0|1} 传回值: {0|1} 说 明: OFF | 0 关闭开路归零功能 ON | 1 启动开路归零功能

6.4.3 DISPlay 指令系统

- 1. :DISPlay:STATe?
- 功 能: 查询目前显示的功能页面
- 参数:无
- 传回值: {LCTEST | WVTEST | NULL | MAIN | SYSTEM }
- 2. :DISPlay:LCTest

功 能: 切换功能页面为 LC TEST
参 数: 无
传回值: 无
3. :DISPlay:WVTest
功 能: 切换功能页面为 WV TEST
参 数: 无
传回值: 无

6.4.4 LCTest 指令系统

- 1. :LCTest:SOURce:VOLTage_{<numeric_value> | MIN | MAX}
- 功 能:设定或查询 LC/IR 功能的测试电压
- 参数: {<numeric_value> | MIN | MAX}
- 传回值: numeric_value
- 说明:MIN 1V MAX 800V(TH2689) 500V(TH2689A)
- 2. :LCTest:SOURce:CURRent_{<numeric_value> | MIN | MAX}
- 功 能:设定或查询 LC/IR 功能的充电电流
- 参数: {<numeric_value> | MIN | MAX }
- 传回值: numeric value

说	明:	MIN	0.5mA	
		MAX	500.0mA (LE	$EV \leq 100V$
			/	

 $P_{MAX} / LEV (P_{MAX}=50W)$

- 3. :LCTest:CONFigure:FUNCtion_{SEQ | STEP | CONT}
- 功 能:设定或查询 LC/IR 功能测试模式
- 参数:{SEQ|STEP|CONT}
- 传回值: {SEQ | STEP | CONT }
- 4. :LCTest:CONFigure:SPEed_{FAST | MEDium | SLOW}
- 功 能:设定或查询 LC/IR 功能的测试速度
- 参数:{FAST | MEDium | SLOW}
- 传回值: {FAST | MEDium | SLOW }
- 5. :LCTest:CONFigure:RANGe_{<numeric_value> | MIN | MAX}
- 功 能:设定或查询量程档位
- 参数: {<numeric_value> | MIN | MAX }
- 传回值: numeric_value
- 说明: numeric_value 为4 (20mA)、3 (2mA)、2 (200uA)、1 (20uA) 及0 (2uA) MIN 为 2uA
 - MAX 为 20mA

6. :LCTest:CONFigure:RANGe:AUTO_{ OFF | ON | 0 | 1}

- 功 能:设定或查询是否启动自动换档模式
- 参数:{OFF|ON|0|1}
- 传回值: {0|1}

况 明: OFF 0 于动选择重	作 里 柱 넘 忸
--------------------------	-----------

ON | 1 自动选择量程档位

7. :LCTest:CONFigure:CHGTime_{<numeric_value> | MIN | MAX}

- 功 能:设定或查询测试的充电时间
- 参数: {<numeric_value> | MIN | MAX }
- 传回值: numeric_value
- 说明: numeric_value 为 0Sec~999Sec MIN 为 0Sec MAX 为 999Sec

8. :LCTest:CONFigure:DWELl_{<numeric_value> | MIN | MAX}

- 功 能:设定或查询 SEQ 测试模式的延迟时间值
- 参数: {<numeric_value> | MIN | MAX }
- 传回值: numeric_value
- 说 明: numeric_value 为 0.2Sec~999.0Sec
 - MIN 为 0.2Sec MAX 为 999.0Sec

9. :LCTest:MEASure:STATe?

- 功 能: 查询目前的测试状态
- 参数:无
- 传回值: {CHG | TEST | DCHG}

10. :LCTest:MEASure:FETCh?

- 功 能: 查询测试结果
- 参数:无
- 传回值: {0(OK) | 1(ERROR) }, {NO | PASS | HIGH | LOW}
- 说明:0
 不处于 TEST 状态,或 TEST 状态时未超量程

 1
 选择了不恰当的量程测试,无法得到正确的测试结果

 NO
 没有使用比较器功能进行比较
 - PASS | HIGH | LOW 比较器进行比较的结果

11. :LCTest:MEASure:IR?

- 功 能: 查询测试结果的 IR 值
- 参数:无
- 传回值: numeric_value,格式为<NR3>,单位为OHM

12. :LCTest:MEASure:LC?

- 功 能: 查询测试结果的 LC 值
- 参数:无
- 传回值: numeric_value, 格式为<NR3>, 单位为 AMP
- 13. :LCTest:MEASure:VMON?
- 功 能: 查询测试时的电压测试值
- 参数:无
- 传回值: numeric_value, 格式为<NR3>, 单位为 VOLT

6.4.5 WVTest 指令系统

- 1. :WVTest:SOURce:VOLTage_{<numeric_value> | MIN | MAX}
- 功 能:设定或查询 WV 功能的测试电压
- 参数: {<numeric_value> | MIN | MAX}

第六章 命令参考

住厅	古店	mumorio violuo	
「を臣		numeric_value	137
祝	明:	MIN	
		MAX	800V (TH2689)
_			500V (TH2689A)
2.	:WV	Test:SOURce:CU	RRent_{<numeric_value> MIN MAX}</numeric_value>
功	能:	设定或查询 WV」	力能的允电电流
参	数:	{ <numeric_value></numeric_value>	MIN MAX}
传归	山值:	numeric_value	
说	明:	MIN	0.5mA
		MAX	PMAX / VfMAX (PMAX=65W, VfMAX参照上条指令)
3.	:WV	Test:CONFigure:	TEND_{ <numeric_value> MIN MAX}</numeric_value>
功	能:	设定或查询 WV J	力能的测试结束时间
参	数:	{ <numeric_value></numeric_value>	MIN MAX}
传回	山值:	numeric_value	
说	明:	MIN	0Sec
		MAX	600Sec
4.	:W\	Test:CONFigure:	CHGTEND_{ <numeric_value> MIN MAX}</numeric_value>
切	能:	设定或查询 ₩V↓	力能的最大允电时间
参	数:	{ <numeric_value></numeric_value>	MIN MAX }
传归	山值:	numeric_value	
况	明:	MIN	5Sec
_		MAX	600Sec
5.	:W\	Test:MEASure:S	IATe?
功	能:	查询目 前的测试制	《态
参	数:	尤	
传归	山值:	{CHG TEST DC	CHG}
6.	:W\	Test:MEASure:T	Rise?
功	能:	查询测量电压达到	J0.9Vf(工作电压)的上升时间
参	数:	九	
传回	山值:	numeric_value, 榨	予式为 <nr3>, 単位为 Sec</nr3>
7.	:WV	/Test:MEASure:V	Terminate?
功	能:	查询测试时间到远	生 Tend 时的测量电压值
参	数:	无	
传回	目值:	numeric_value, 梢	务式为≤NR3≥,单位为Ⅴ
8.	:WV	Test:MEASure:T	End?
功	能:	查询 WV 的总测记	式时间:上升时间(Tr)+测试时间
参	数:	无	
传回	值:	numeric_value, 梢	}式为 <nr3>,单位为 Sec</nr3>
9.	:WV	Test:MEASure:V	End?
功	能:	查询 WV 结束时的	的测量电压值
参	数:	无	
传回	值:	numeric_value, 梢	δ式为≤NR3≥,单位为 V
10.	:WV	/Test:MEASure:D	ATA[:DATA]?
功	能:	传回资料缓冲区份	R留的资料,回传多少资料由 POINTs 命令定义
参	数:	无	
			-

传回值: 查询回应的资料是

```
<set1>: 第一组测量资料
     <set2>: 第二组测量资料
     <setn>: 最后一组测量资料
     而每一组回传资料都包括下列参数: <point>, <time>, <voltage>
     其中
     <point>为资料数,格式为<NR1>,第1笔为1
     <time>为时间资料,格式为<NR3>,单位为S
     <voltage>为电压资料,格式为<NR3>,单位为 V
11. :WVTest:MEASure:DATA:POINts_<start>,<end>
功 能:设定或查询资料笔数
参 数:设定须回传的资料笔数,其中
```

- <start>: 设定回传资料的起始笔数,设定范围为1~220(预设值为1) <end>: 设定回传资料的结束笔数,设定范围为1~220(预设值为220)
- 传回值:查询存储在资料保留区的资料笔数。若传回值为0表示没有保存任何资料,传回值 格式为<NR1>

6.4.6 TRIGger 指令系统

:TRIGger[:IMMediate] 1.

- 功 能: 在触发模式为总线方式 (BUS) 下启动测试功能
- 参数:无
- 传回值:无
- 2. :TRIGger:SOURce_{INT | MAN | BUS | EXTernal}
- 功 能:设定或查询触发模式
- 参数: {INT | MAN | BUS | EXTernal }
- 传回值: {INT | MAN | BUS | EXTernal }
- 3. :TRIGger:DELay_{<numeric_value> | MIN | MAX}
- 功 能:设定或查询外触发源的延迟时间
- 参数: {<numeric_value> | MIN | MAX }
- 传回值: numeric_value
- 说 明: MIN 0mSec
 - 9999mSec MAX
- 4. :TRIGger:EDGE_{FALL | RISI}
- 功 能: 设定或查询外部触发信号模式
- 参数:{FALL|RISI}
- 传回值: {FALL | RISI }
- 说 明: FALL 为下降沿触发 RISI 为上升沿触发

SYSTem 指令系统 6.4.7

1. :SYSTem:BEEPer[:IMMediate]

功 能:蜂鸣器立即响一次

敍 数:无 传回值:无 2. :SYSTem:BEEPer:STATe_{OFF | ON | 0 | 1} 功 能: 设定或查询是否启动蜂鸣器装置 参数:{OFF|ON|0|1} 传回值: {0|1} 说 明: OFF | 0 关闭蜂鸣器 ON | 1 启动蜂鸣器 3. :SYSTem:LFRequency_{50 | 60} 功 能:设定或查询仪器的工作电源频率。 参数: {50 | 60 } 传回值: {50 | 60 |, 单位 Hz 4. :SYSTem:HANDler_{CLEAR | HOLD} 功 能:设定或查询 HANDLER 接口状态的清除模式 参数:{CLEAR | HOLD} 传回值: {CLEAR | HOLD} 说 明: CLEAR 执行测量前清除上次测量结果 HOLD 测试结果将维持到下次测试结果不同时才转变 5. :SYSTem:HANDler:STATe_{OFF | ON | 0 | 1} 功 能:设定或查询是否启动 HANDLER 接口装置 参数: {OFF | ON | 0 | 1} 传回值: {0|1} 说 明: OFF | 0 关闭 HANDLER 接口 ON | 1 启动 HANDLER 接口 6. :SYSTem:CONTrast_{<numeric_value>} 功 能: 设定和查询 LCD 的对比度 参数: <numeric_value> 传回值: <numeric value>, 0~31 7. :SYSTem:RANGEDwell_{<numeric_value> | MIN | MAX} 功 能: 设定或查询 LC/IR 量程档位切换延迟时间 参数: {<numeric_value> | MIN | MAX} 传回值: numeric value 说 明: MIN 0.0Sec 9.9Sec MAX 8. :SYSTem:AVErage_{<numeric_value> | MIN | MAX } 功 能:设定或查询测量平均次数 参数: {<numeric_value> | MIN | MAX } 传回值: numeric value 说 明: MIN 1 MAX 8 9. :SYSTem:PRESet 功 能:重设仪器回到预设状态 参数:无 传回值:无 10. :SYSTem:ERRor? 功 能: 查询仪器错误行列中的现有错误信息

参	数 :	无
传回	可值:	numeric_value string
计片	日日	mumaria valua 雄沿河白矿

呪	明:	numeric_value	错误讯息码
		string	错误讯息字串

6.5 出错信息

发送给仪器的总线命令中,可能包含错误命令或语法,或不正确的参数。本仪器对命令 串是边分析边执行,如果遇到错误,则显示出错信息并中止命令分析,因而在一个命令串中, 错误之后的内容将被忽略。

以下是总线上常见错误讯息表:

讯息码	讯息字串	说明
0	"No error"	目前没有任何错误讯息存在
-1	"Unknow message"	无法识别的命令
-2	"Syntax error"	语法错误
-3	"Parameter error"	参数错误
-4	"Data type error"	参数为数值时,超出允许设置的范围
-5	"Data too long"	输入的数据太长
-6	"Invalid data"	无效数据
-7	"Suffix error"	单位错误
-8	"Can't executed"	命令无法执行
-9	"No record"	*RCL 命令调用的文件不存在
-10	"Too many errors "	错误太多

第七章 分选接口使用说明

本仪器中 COMPARE(比较测试)时使用 HANDLER 接口与外部设备连接,其连接口为 24 芯,脚位说明如下。

7.1 HANDLER 接口脚位说明

脚位	信号名称	说明
1	/EXT TRIG	外部触发
2	/DISCHARGE	放电
3, 20	/TEST	测试
5-7	COM1	外部直流电源接地
4, 24	Х	N.C
8	GND	内部电源接地端, 连接大地
9	Х	N.C
10	VEXT	外部直流,可接受的电压范围为+5V~+24V
11	VINT	内部直流电压+5V
12-14	Х	N.C
15	/PASS	测值在上、下限值的范围内(PASS)
16	/CHARGE	充电
17	/FAIL	测量不合格
18	/EOT	测量结束
19	/HI	LC 测值高于上限值; IR 测值低于下限值
21	/LO	LC 测值低于下限值; IR 测值高于上限值
22	/ACQ	类比取样结束,可以将下一个待测物移至仪器测试
		端上(不论平均几次测量,只在最后一次测量取样
		结束产生该信号)
23	/FAIL_CHARGE	充电失败

表 7-1 HANDLER 接口脚位一览表

※注: 表 7-1 中"/"表示低电平有效。

7.2 HANDLER 接口板跳线设置

HANDLER 接口板上的跳线用来选择分选输出信号及控制信号是使用内部电源还是外部电源,表 8-5 是对每个跳线(J901、J902)的描述,它们在接口板上的位置如图 7-1 所示。

☞提示: 在表 7-2 和图 7-1 中,"N"表示出厂时默认的跳线设置。

表 7-2 HANDLER 接口板上的跳线设置				
跳	线			
号码	位置			
J901	左边	使用内部地		
	右边(N)	使用外部地		
J902	左边	使用内部直流电压源 VCC(+5V), 应同步设置		
		J901 到左边。		
	ナキのり	使用外部直流电压 EXV1(5V-24V), 应同步设		
	石边(N)	置 J901 到右边。		

图 7-1 跳线

7.3 HANDLER 接口信号图示

图 7-2 SEQ.TEST 时序

- ※注1: HANDLER 接口处于 CLEAR 模式时,进入测试状态将上次比较结果 PASS/FAIL 信 号清除。
 - 注 2: 可以通过设置系统菜单中 TRIGDELAY,来确定接收到/EXT TRIG 信号后延时多久进入充电状态

	TH2689/89A	使用说明书
--	------------	-------

第七章 分选接口使用说明

(2)当仪器处于 STEP TEST 测试功能时, HANDLER 接口信号时序图

FYT TRI	☆ ↓ ↓ ↓
/CHARGE	
/TEST	
/DISCHAR	GE
/ACQ	
/EOT	
/PASS	
/FAIL	
/LO	
/ HI	图 7-3 STEP TEST 时序
※注1:	HANDLER 接口处于 HOLD 模式时,比较器结果 PASS/FAIL 信号要到下次测量结果
注 2:	友生受化时才翻转。 仪器处于放电状态时,收到/EXT TRIG 信号,仪器将自动充电,并完成 1 次测量; 处于测试状态,收到 1 次/EXT TRIG 信号,完成 1 次测量。
(3) 充	电失败时序图
/CHARGE	
/TEST	
/DISCHAR	AGE
/FAIL CH4	ARGE
※注: 化	图 7-4 充电失败时序 X器对待测件充电失败产生/FAIL CHARGE 信号,到下次充电清除该信号。

第八章 成套及保修

8.1 成套

仪器出厂时附有装箱单,其<u>附件、资料配制以装箱单为准</u>。用户收到仪器后,应对照装 箱单进行核对,若发生遗缺,请立即与本公司或经营部门联系。 表 8-1 仪器装箱参考

序号	名称	数量
1	TH2689 型电容漏电流/绝缘电阻测试仪	1台
2	测试电缆	1付
5	测试夹具	1付
6	三线电源线★	1根
7	2A 保险丝★	2只
8	使用说明书	1份
9	测试报告	1份
10	产品合格证和保修卡	1张

☞提示:根据需要,用户可以向公司订购以下选件:(请登陆公司网站获取更多信息)
 TH2689-HANDLER 接口连接电缆
 TH2689-IEEE-488 接口

8.2 保修

保修期:使用单位从本公司购买仪器者,自公司发运日期计算,自经营部门购买者,自 经营部门发运日期计算,保修期二年。保修应出具该仪器保修卡。保修期内,由于使用者操 作不当而损坏仪器者,维修费用由用户承担。仪器由本公司负责终生维修。

本仪器维修需专业技术人员进行维修;维修时请不要擅自更换仪器内部各器件;对仪器 维修后,需重新计量校准,以免影响测试精度。由于用户盲目维修,更换仪器部件造成仪器 损坏不属保修范围,用户应承担维修费用。

仪器应防晒、防湿,应在1.2所述的环境中正确使用仪器。 长期不使用仪器,应将仪器用出厂时包装箱包装封存。

62